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Developing probabilistic seismic demand models is a key element in seismic risk assessment of structures
such as bridges. Identifying the influential parameters related to the seismic response of a structure is a
crucial step towards evaluating its seismic vulnerability. Most of the past related sensitivity studies have
focused on regular bridges with typical configurations, although observed damage from past earthquakes
affirms that compared to regular bridges, those with irregularities or geometric inconsistencies in the
configuration are more susceptible to noticeable damage. In this paper, using state of the art statistical
methodology, the influence of various parameters on the resulting probabilistic seismic demand is inves-
tigated. This study concentrates on concrete bridges including three geometric irregularity types: (i) skew
angle, (ii) a frame with unbalanced stiffness, and (iii) tall column heights, and a comprehensive sensitivity
of a broad range of probabilistic modeling parameters on the seismic response is assessed. The statistical
analysis reveals that the common parameters including ground motion intensity, longitudinal reinforce-
ment ratio, column diameter, number of columns per bent, column height, span length, and concrete
compressive strength significantly influence the response of the three studied irregular bridges. The indi-
vidual influential parameters affecting each class of irregularity are highlighted and discussed.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The experience of past earthquakes (Northridge in 1994, Kobe
in 1995, and Chile in 2010) reveals that compared to bridges con-
sisting of typical configurations, bridges with irregularities in their
configuration have a higher chance of being severely damaged or
collapsed [1–3]. Bridges with typical geometric configurations are
defined as regular bridges (i.e. bridges with zero skew angle, zero
curvature, normal column heights, and balanced stiffness between
frames). The primary objective of this paper is to improve the
understanding of the seismic performance of irregular bridges
through statistical sensitivity studies, while most of the past stud-
ies focused on regular bridges.

Probabilistic seismic demand models (PSDMs) are essential
tools to describe the seismic demand of various components of a
bridge in terms of the ground motion intensity measures.
Researchers [4–8] commonly utilize PSDMs to perform fragility
analysis for characterizing the conditional reliability of bridges.
Several studies [4,9,10] conducted sensitivity studies to identify
the parameters significantly affecting the bridge response. Nielson
and DesRoches [4] and Padgett and DesRoches [10] studied one
specific bridge type, three span simply supported steel girder
bridge that was a non-skewed bridge with normal column heights
and balanced frame in the central US. Nielson and DesRoches [4]
considered 14 input variables including concrete and steel
strength, coefficient of friction for bearing, initial stiffness of bear-
ing, initial stiffness of passive and active abutment, rotational and
translational stiffness of foundation, mass, damping ratio, gap
between abutment and deck, gap between decks, and ground
motion loading direction. Later, Padgett and DesRoches [10]
addressed a research gap for the retrofitted bridges by adding ret-
rofit parameters for the restrainer cable, elastomeric bearing, steel
jackets, and shear key, to the sensitivity study and conducting fra-
gility analysis sensitivity on this bridge type. Duke, et al. [9] illus-
trated a sensitivity analysis on a two span integral concrete box
girder bridge in California and investigated the effect of five design
parameters listed as longitudinal and transverse reinforcement
ratio, column height to the column dimension ratio, superstructure
depth to the column dimension ratio, and span length to the col-
umn height ratio. These previous studies typically focus on regular
bridges and selected numerical parameters. However, the present

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2017.03.017&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2017.03.017
mailto:soleimani@gatech.edu
http://dx.doi.org/10.1016/j.engstruct.2017.03.017
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


F. Soleimani et al. / Engineering Structures 141 (2017) 356–372 357
study attempts to determine the influence of a broader range (43
input variables) of modeling parameters including categorical
parameters as well as numerical parameters on the seismic
response of irregular bridges.

Among geometric irregularities, skew requires particular atten-
tion mainly because past earthquakes have shown serious damage
caused by the displacement or the unseating of the bridge decks in
bridges with large skew angles [11]. Skewed bridges are commonly
constructed in response to complex geometric constraints at the
site that necessitate using skew-angled abutments. As a result,
the eccentric passive resistance of the abutment backfill initiates
and promotes the in-plane rotation of the superstructure’s deck
that may ultimately cause unseating of the superstructure leading
the skewed bridge to collapse. Several research efforts investigated
the effect of skew angle along with a few other parameters on the
seismic response of bridges [12–15]. As an example, Abdel-Mohti &
Peckan [12] explored the seismic performance of a selected three-
span concrete box-girder bridge with three different skew angles
of 30�, 45�, and 60�. They made comparisons for bridges with
two different cases of boundary conditions (with and without
shear keys) and directions of applied ground motions. Four
selected ground motions were applied for pushover and time his-
tory analysis using SAP2000. The results showed skew angle and
boundary conditions to have significant effects on the bridge
response. Meng & Lui [13] analyzed a 60� skewed box-girder
bridge, the Foothill Boulevard Undercrossing, in SAP2000. The
effect of deck flexibility, column base fixity, and skew angle was
investigated and it was concluded that all three factors can change
the bridge response drastically.

Kaviani et al. [11] performed a seismic assessment of selected
skewed bridges located in California. Three short California bridges
with various structural parameters have been selected. Sensitivity
of the deck rotation and column drift ratio was assessed according
to five skew angles 0�, 15�, 30�, 45�, and 60�, two different span
ratios 1.0 and 1.2, two column height ratios 1.0 and 1.5, and three
types of ground motions as soil-site, rock-site, and pulse-like with
six angles of incidence, 0�, 30�, 60�, 90�, 120�, and 150�. It was
demonstrated that the monitored skewed bridge demands includ-
ing deck rotation and column drift ratio were higher than those for
the non-skewed bridges, and these demands exhibited sensitivity
to the characteristics of the ground motions as well as the skew
angles. Among other studies in this area, Sullivan [16] and Yang
et al. [17] developed fragility curves of bridges with skew angles
between 0� to 45� located in the moderate seismic zones. Sullivan
[16] conducted fragility analysis and developed associated curves
for skewed and multi-span simply-supported steel girder bridges.
The proposed fragility curves indicate that the bridge fragility is
not noticeably influenced by the low to medium skew angles
(i.e., skew angles less than 30�), while it is significantly affected
by the higher range of skew angles. Yang et al. [17] evaluated
bridges with various design types, and retrofitting strategies. They
found that overall, bridges with larger skew angles are more vul-
nerable to seismic excitations. Zakeri et al. [18] investigated the
effect of skew angles, single and two-column bents, integral and
seat-abutment types, and seismic design levels on the fragility
curves of concrete box-girder bridges. The old designed bridges
showed less sensitivity to the skew angle compared to the more
recently designed bridges, and bridges with integral abutment
types exhibited less vulnerability to the skew angle in comparison
with bridges with seat-type abutments. Similar to the past sensi-
tivity studies on regular bridges, the mentioned studies on skewed
bridges investigated the influence of selected parameters such as
skew angle, direction of ground motion, and span ratios on several
bridge responses such as deck rotation and column drift ratio. In
order to provide a more comprehensive perspective on the impact
of modeling parameters on the seismic response of skewed bridges
as a type of irregular bridge, this paper conducts sensitivity study
on a broader range (43 variables) of modeling input parameters
on various component responses (9 component responses) which
are commonly used to develop PSDMs and system fragility curves.
The previous studies have been invaluable in enhancing knowledge
about the response of bridges. However, none of the cited previous
studies used the recently improved methodologies to create
numerical modeling of skewed abutments, a broad range of input
variables for the sensitivity study of concrete box girder bridges,
and recently developed and more robust statistical techniques for
the sensitivity study. Therefore, there is still a need to a better
understanding of issues such as the most significant modeling
parameters on the responses of various bridge components and a
quantitative measure of the relative importance of these
parameters.

Other types of irregularities in bridge configuration include a
frame with unbalanced stiffness and tall column bents. Bridges
with these irregularities are typically constructed in specific
regions (e.g., mountainous areas, deep valleys, and overcrossings)
with complex topography for the foundation layout. Consequently,
based on the topography attributes, some of these bridges have
columns higher than the typical range, while others have columns
of variable height. According to the post-earthquake observations,
Zheng & Wenhua [19] explored the main four failure modes of
bridges with high or non-uniform columns in mountainous areas.
Based on their study, the first damage state was associated with
a change in the position of the abutment, abutment settlement,
and damage to the superstructure deck. The second state was
mainly related to the cracking and breaking of piers, in addition
to the buckling of the steel reinforcement. The third state of dam-
age was caused by the inclination and deterioration of supports
and the last state of damage resulted in the bridge collapse because
of the failure of piers and supports followed by the falling of the
superstructure. In the case of a bridge frame with unbalanced stiff-
ness, the large relative displacement between the adjacent piers
[20] with inconsistent column heights is the major factor affecting
the superstructure’s failure. The combination of tall and short piers
within a bridge exposed to earthquake excitation results in uneven
force distribution between the piers [20,21]. Zheng & Wenhua [19]
also clarified the importance of following a separate seismic design
procedure for tall-pier bridges. They recommended using stronger
column bents to be able to resist large bending moments, shear
forces, and torques. All of these factors indicate the complex seis-
mic response of bridges with unconventional column attributes.
Jara et al. [22] examined the effect of three different topologies
of unequal column heights on the seismic demand of the bridge
columns. The selected medium length bridges included two cases
of five-span bridges and one case of a six-span bridge. Twelve
ground motions and two soil types, soft and hard, were selected
for the analysis. Both the considered unequal configurations and
soil types showed significant impact on the pier damage index,
particularly for the columns located adjacent to the tallest column.
Abbasi et al. [23] analyzed the seismic fragility of old designed box-
girder viaduct bridges with an expansion joint and four levels of
variations between the column heights. The studied bridge was a
four-span bridge with three columns per bent. The results demon-
strated that the fragility of the considered bridges increases by
increasing the variation between the column heights, and among
various components of the bridge, deformation of the bridge deck
and the in-span hinge presented the highest sensitivity to the
height variation. That study is limited to one specific bridge type
and only considered the effect of column heights on the bridge
response. The seismic response and performance of tall and unbal-
anced bridges have not been deeply studied, and hence there is a
need to further assess the seismic performance of these irregular
bridge configurations. To date, sensitivity studies on the impact
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of modeling parameters on the seismic response of unbalanced and
tall bridges have not been performed and therefore this paper aims
to address this deficiency.

One of the leading steps toward developing a more reliable and
realistic seismic fragility framework of irregular bridges is the
completion of systematic sensitivity analysis to identify the influ-
ential uncertain parameters related to the key responses. More-
over, this paper aims to determine characteristics corresponding
to the general configuration of irregular bridges that have the most
significant effect on the bridge response. Regression analysis incor-
porated with hypothesis testing is a popular approach that helps
identifying the impact of parameters involved in the response.
Although the selected parameters in the past studies were com-
monly selective and quantitative variables, this study evaluates
the effect of a more comprehensive list of modeling parameters
including both quantitative and qualitative ones using statistical
tools including Categorical Regression Analysis and Lasso Regres-
sion, and Partial F-statistics. This study addresses a wide range of
irregularities according to the existing California bridge inventory.
The considered ranges include skew angles varying from zero to
77�, tall column height ratios (i.e. ratio of the average column
height of a tall bridge to the average column height of a normal
bridge) ranging from 1.5 to 4.5, and an unbalanced frame with
stiffness ratios (i.e. stiffness ratio between different bents within
a bridge frame) changing from 75% to lower than 15%. The details
of the irregularity ranges are provided in Section 2.

The next section (Section 2) reviews the general procedure for
generating three-dimensional numerical bridge models in Open-
Sees. An accessible inventory of existing irregular bridges located
in California serves as the basis for establishing bridge component
characteristics. This study considers a complete list of uncertain
characteristics as input parameters for statistical analysis. Critical
seismic responses serve as outputs of the statistical model and
are captured by performing nonlinear time history analysis.

The remainder of the paper is arranged as follows. In Section 3,
implemented statistical approaches are described to deal with both
numerical and categorical variables. Following that, Section 4 pre-
sents the implementation process and comparisons of the results
in three main aspects. First, the effects of parameters are discussed
separately for various ranges within each irregularity type. Second,
comparisons are made between irregularity types and their associ-
ated significant parameters. Third, weights of significant parame-
ters are examined to measure their effectiveness in predicting
the bridge responses. The paper concludes by detecting common
influential parameters, although the relative significance of the
various predictors changes over different bridge responses and
irregularity ranges.

2. Numerical modeling and analysis

2.1. Numerical modeling of bridges

For the purpose of this study, the single-frame box-girder con-
crete bridge type is selected, and OpenSees was used to develop
three-dimensional numerical models. Fig. 1 illustrates the general
layout and approach for numerical modeling of the bridges. The
incorporation of skew into the analytical modeling of straight
bridges necessitates various modifications including recently
developed modeling strategies based on the experimental and
numerical studies of skewed bridges [24,11]. In this study, skew
angles are divided into 5 ranges: low (0�–15�), medium (15�–
30�), high (30�–45�), very high (45�–60�), extreme (60�–77�), noted
as the maximum value in the database for the existing bridges in
California. In the simulation process, skew angles are distributed
uniformly in each range and assigned randomly to the bridge
samples.

To date, limited research exists regarding bridges with tall col-
umn bents and a frame with unbalanced stiffness. Likewise, to the
best of the authors’ knowledge, there are no data sets from exper-
iments on these classes of bridges. Therefore, the only change that
is considered in the present study for modeling bridges with unbal-
anced frames and tall column bents is the variation of the column
heights. In this regard, four groups of California box-girder bridge
plans, listed as stream crossings, ramps, connectors, and viaducts
were reviewed in detail to extract column height values in order
to have a comprehensive database. The overall goal of this step
was to set up a realistic sample of unbalanced and tall bridge pro-
files to use for creating synthetic unbalanced and tall bridge real-
izations in the analytical modeling of bridges. The average
column heights (Have) of unbalanced and tall bridges were normal-
ized by the average column heights (Hbase) of the base models (i.e.,
regular bridge with normal column height and balanced stiffness
frame). Those ratios of Have=Hbase meeting the column heights cri-
teria to be considered as tall bridges (i.e., ratios higher than 1.5)
are used for building the models for this class of bridges. As an
example, the ratios for bridges designed in the Pre-1971 era are
shown in Fig. 2a. The column height ratio of tall bridges is divided
into three different ranges as shown in Fig. 2b including: moder-
ately tall (1:5 6 Have=Hbase < 2:5), very tall (2:5 6 Have=Hbase <

3:5), and extremely tall (3:5 6 Have=Hbase < 4:5).
A single column-height-ratio is developed by normalizing the

height of all the columns in a bridge (Hi; i ¼ 1; . . . ;n and
n ¼ number of columns in a bridge) to the bridge-average-height
(Have). This yields ratios (Hi=Have) for each bridge that is centered
on 1, but values extend both above and below the center (Fig. 3a).
Based on the Caltrans Seismic Design Criteria [25], a bridge is
defined to have a frame with unbalanced stiffness when different
bents within the frame have a stiffness ratio of less than 75%. Since
stiffness is a function of modulus of elasticity, moment of inertia,
and column height, the criteria assigned to the stiffness ratio of
an unbalanced frame can be converted to a criterion for the column
heights, by assuming similar modulus of elasticity and moment of
inertia for different bents in a frame. This criterion is converted to
column height ratios by normalizing the short (H1) and tall (H2)
column heights of a bridge by the average column height, as shown
in Fig. 3b. The ratios of H1=Have and H2=Have are calculated as 0.95
and 1.05, respectively. Thus, the respective ratios (i.e., higher than
1.05 and lower than 0.95, Fig. 3a) are implemented in the modeling
of bridges with unbalanced frames. For bridges with unbalanced
stiffness, four ranges of column height ratios are considered as
(Fig. 3b): slightly unbalanced (55% 6 stiffness ratio < 75%), moder-
ately unbalanced (35% 6 stiffness ratio < 55%), highly unbalanced
(15% 6 stiffness ratio < 35%), extremely unbalanced (stiffness
ratio < 15%). The corresponding column height ratios for the short
column H1=Have and for the tall column H2=Have are provided in
Fig. 3b.

Table 1 summarizes the various levels of irregularities dis-
cussed above. The three-dimensional bridge models are created
in OpenSees for each level of irregularity, two different types of
abutments (i.e. rigid diaphragm and seat-abutment types), and
the specifications of various design eras (i.e. bridges designed
before 1971, between 1971 and 1990, and after 1990). The bridge
deck elements are typically modeled using elastic beam column
elements as the bridge deck remains elastic during earthquake.
The bridge columns are modeled using displacement beam column
elements with fiber cross sections [26]. The column elements are
connected to the deck elements and bridge footing by rigid links
and foundation springs, respectively. More details (e.g. modeling
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of pounding and bearing elements) about numerical modeling of
box-girder bridges can be found in the previous studies [4,7].

2.2. Statistical parameters

The statistical parameters in this study can be classified into two
main groups of categorical and numerical parameters. In this study,
Sa-1.0s (i.e. the spectral acceleration at 1.0 s) was assigned to the first
potential predictor X1 and chosen as the measure of the ground
motion intensity, since it has been found to be the optimal intensity
measure for classes of box-girder bridges [7]. The associated param-
etersof the twogroupsare listed inTable2. To incorporate theuncer-
tainty into the numerical modeling of bridges, probabilistic
geometric andmaterial parameters were selected for the numerical
simulations (Table 3). The column height values in addition to the
distribution parameters are listed in Table 4. All column height val-
ues follow the lognormal distribution.

3. Statistical analysis framework

In order to detect the influential parameters on the seismic
responses of the irregular bridges, this study deals with a problem
that involves both numerical and categorical variables. In the fol-
lowing, categorical regression analysis, applicable to the models
with only categorical variables, is explained through an illustrative
example. Then, a detailed explanation is provided for the Lasso
Regression that treats categorical variables similar to the process
used in the categorical regression analysis. Later, Lasso Regression
is implemented to identify the parameter weights in predicting the
bridge response.

3.1. Categorical regression analysis

The majority of regression models focus on numerically valued
variables (i.e. variables that are measured in a numerical scale).
However, in this study, some of the parameters considered are
qualitative (ordinal and categorical) (Table 2). Contrary to the
numerical variables, the effect of categorical variables cannot be
estimated using standard regression models. Thus, a categorical
regression method is applied herein to incorporate the qualitative
variables into the regression model.
The categorical regression method introduces a set of indicator
or dummy variables to account for the different levels of a variable
and even more importantly to obtain variables in the regression
model that have simple interpretations. As an example, to intro-
duce the effect of two separate levels of a variable (e.g. abutment
type) into a binary regression model, an indicator variable is
defined as:

x ¼ 0 if the variable is in category #1
1 if the variable is in category #2

�
ð1Þ

In some applications, the variable is not binary, but rather
multi-categorical (e.g. design era). When categorical variables with
more than two levels are included in a regression model, additional
steps are required to ensure the consistency and interpretability of
the results. These steps consist of recoding categorical variables
into a number of separate variables. Hence, in a general case, a
variable with k possible levels of category is modeled by k� 1 indi-
cator variables. For example, if a categorical variable X has five
levels, then it will be transformed into four separate variables
ðx1; . . . ; x4Þ that will be used in the multiple regression model and
contain the same information as the initial single categorical vari-
able. The indicator variables are assigned either zero or unit values,
representing each level of the category. Thus, the binary coding
takes the following form:

xi ¼
1 if the variable is in category i

0 otherwise
;

�
ð2Þ

where i ¼ 1; . . . ; k� 1, and the kth category is selected as the refer-
ence. In this approach, indicator variables can be included in the
hypothesis testing similar to any other variable. Their mean differ-
ences can be estimated with a linear model by representing groups
with a set of k� 1 variables, where k is the total number of groups.
An alternative coding approach is using -1 and 1 instead of 0 and 1.
The only difference between these two coding strategies is raised in
the interpretation.

According to this standard, when the response y depends solely
to one categorical variable, X, the predictor is modeled by multiple
dummy variables as

EðyÞ ¼ b0 þ b1x1 þ . . .þ bk�1xk�1 ð3Þ



Fig. 2. (a) Average bridge column height ratios for bridges designed in Pre-1971; (b) Considered configurations for tall bridges.
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Interpretation of this categorical model follows directly from
determining the response for different categories of X. If the model
is in the kth category, EðyÞ ¼ b0 which means the intercept in the
categorical regression model represents the expected response
for the reference category (i.e. kth level). If the model is in the ith

category, then EðyÞ ¼ b0 þ bi which means each slope bi in the
model indicates the increase or decrease of the expected response
in comparison to the reference category k. Hence, the results can be
interpreted as the change in the expected transition from one cat-
egory to another.

The categorical regression analysis yields a model mathemati-
cally identical to Analysis of Variance (ANOVA) with similar inter-
pretations and statistical inferences. Consequently, the categorical
regression weights are equal to the ANOVA mean differences. Both
of these techniques retain the information on how the k groups dif-
fer from one another, which determine the influence of the param-
eters considered.

3.2. Lasso regression

Conventional regression techniques mainly follow the standard
least squares framework by considering all possible covariates in
the model in spite of the fact that the resulted estimates are not
often satisfactory. The first concern is associated with the predic-
tion accuracy, as the estimates generated by the least squares
method can have large variances. The second challenge relates to
the interpretation of the developed regression model, which is
intricate in the case of a model with a large number of predictors.

In order to cope with these problems, a number of approaches
are proposed and known as the variable subset selection tech-
niques [28,29], such as Best-Subset Selection [30], Forward-
Stagewise Regression [31], and Forward-stepwise and backward-
stepwise Selection [32], which improve the prediction accuracy.
Generally, the subset selection reduces the variance of the esti-
mates and prunes some of the predictors with less impact on the
overall regression model. Although these techniques produce
improved models, they utilize a discrete process in which a vari-
able is either retained or discarded. As a result, these techniques
may perform poorly in reducing the prediction error of the full
regression model.

Shrinkage methods [33] are more recently developed tools that
use a continuous process rather than the discrete scheme, which
lead to noticeably reducing the variance and the prediction error.
These methods minimize the residual sum of squares subject to a



Fig. 3. (a) Bent height ratios for bridges designed in Pre-1971; (b) Considered configurations for a bridge frame with unbalanced stiffness.

Table 1
Summary of the considered ranges for irregularity parameters.

Irregular Parameters Levels

Skew Low, Medium, High, Very high, Extreme
Tall Moderately Tall, Very tall, Extremely tall
Unbalanced Slight, Moderate, High, Extreme
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constraint on the magnitude or the cardinality of the coefficients,
which is their main distinction from the previously mentioned
approaches. Such restriction controls the model complexity, which
subsequently controls the variance of the predicted values and
improves the overall prediction accuracy. Ridge Regression and
Lasso Regression are among the most well-known shrinkage tech-
niques, and between these two, Lasso overcomes Ridge in several
aspects that are explained further. A more comprehensive study
and comparison of these methods are presented by James et al.
[34].

Lasso (Least Absolute Shrinkage and Selection Operator) is a
robust statistical regression technique, mainly applicable to the
problems with a large number of covariates from which the influ-
ential set needs to be determined. Consider yi as the ith response
that depends upon the variables xij, i ¼ 1; . . . ;n and j ¼ 1; . . . ; p;
where n and p denote the number of collected data for the
response and the number of regressors, respectively. Lasso esti-
mates the coefficients of the regression model through the convex
constrained minimization



Table 2
Description of the potential predictors for the statistical analysis.
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b̂Lasso ¼ argmin
b

Xn
i¼1

yi � b0 �
Xp
j¼1

xijbj

 !2

; Subject To

:
Xp
j¼1

jbjj 6 tðconstantÞ; ð4Þ

which minimizes the residual sum of squares, subject to an ‘1-norm
constraint on the coefficients. Such constraint is shown to promote
sparsity among b coefficients.

This problem has an equivalent matrix form

b̂Lasso ¼ argmin
b

kY � Xb22|fflfflfflfflffl{zfflfflfflfflffl}
Lossterm

k þ kkbk1|fflffl{zfflffl}
Penaltyfunction

8><
>:

9>=
>;; ð5Þ

where X, Y, and b are the matrix form of regressors xij, vector of
responses yi, and vector of regression coefficients, respectively.
The tuning parameter k is directly related to the constant t and con-
trols the generated models, such that when k is sufficiently large, t
is equivalently small.

The advantage of Lasso over Ridge relates to the penalty func-
tion which is the source of difference between their performances.
In this regard, Lasso applies an ‘1-norm penalty on the coefficient
vector b (i.e. bj jj j1 ¼Pp

j¼1 bj

�� ��), while Ridge imposes an ‘2-norm con-

straint on b (i.e. bj jj j2 ¼Pp
j¼1

b2
j ). Thanks to the geometric structure of

the ‘1-ball, the coefficient estimates of the parameters xij with the
least impact on the response yi are forced to be exactly zero.

Fig. 4 shows the geometrical illustration of Eq. (5) and the inter-
pretation of the Lasso and Ridge constraints for a model with two
parameters. Technically speaking, the first point of contact
between a sub-level set of the loss and the penalty ball character-
izes the optimal solution. This initial contact point can be located
at a corner of the Lasso diamond-shaped region and thus one of
the two coefficients vanishes to zero. As the number of parameters



Table 3
Distribution of modeling parameters (source: review of bridge plans [27,7].

Parameter Unit Distribution Distribution parameters

Factor 1* Factor 2**

Span length (m) Empirical 35.0 12.3
Deck width (m) Empirical 20.5 12.9
Girder spacing (cm) Empirical 289.6 100.1
Top flange thickness (cm) Empirical
Reinforced concrete 21.3 2.8
Pre-stressed concrete 20.8 2.5
Bottom flange thickness (cm) Uniform 11.4 16.5
Wall thickness (cm) Uniform 25.4 30.5

Depth of superstructure (cm) Uniform

Reinforced concrete Uniform 0.055* Span length 0.06* Span length
Pre-stressed concrete Uniform 0.04* Span length 0.045* Span length
Column diameter (cm) Randomly assign 25% of simulation to each 122, 152, 168, 183

Longitudinal reinforcement ratio N/A Uniform

Pre-1970 design era 1.4 2.4
1970–1990 design era 1.0 3.7
Post-1990 design era 1.0 3.5

Confinement ratio N/A Uniform

Pre-1970 design era Spacing: 30.5 cm
1970–1990 design era 0.3 0.9
Post-1990 design era 0.4 1.7
Abutment backwall height (m) Uniform 1.1 2.6
Pile spacing (m) Uniform 1.7 2.1

Foundation translational stiffness (kN/cm) Normal

Single column - 6 ft dia column 1% long. steel 2977.2 1401.0
Single column - 6 ft dia column 3% long. steel 2451.8 1050.8
Multi-columns - 3 ft dia column 1.5% long. steel 1401.0 1050.8

Foundation rotational stiffness (kN-m/rad) Normal

Single column – 6 ft dia column 1% long. steel 4632.4 1355.8
Single column – 6 ft dia column 3% long. steel 7344.0 1129.8
Multi-columns – 3 ft dia column 1.5% long. steel 0 0
Restrainer length (m) Uniform 2.4 6.1
Initial slack in restrainer cable (mm) Uniform 6.4 25.4
Restrainer stiffness (kN/cm) Uniform 56.9 22.8
Restrainer yield deformation (mm) Uniform 38.1 88.9
Number of restrainers N/A Uniform 8 50
Concrete compressive strength (Mpa) Normal 34.5 4.3
Reinforcing steel yield strength (Mpa) Lognormal 6.14 2.0
Shear key capacity (kN) Normal 4884.2 646.8
Multiplicative factor for coefficient of friction of bearing pads N/A Lognormal 0 0.1
Shear modulus of elastomeric bearing pads (Mpa) Uniform 551.6 1723.9
Transverse gap between deck and shear keys (mm) Uniform 0 38.1
Longitudinal gap between deck and abutment (mm) Uniform 0 152.4
Pile stiffness (kN/cm) Lognormal 80.6 0.86
Mass factor N/A Uniform 1.1 1.4
Damping % Normal 0.045 0.0125

*, ** Factors 1 and 2 represent the mean and standard deviation for normal, lognormal, and empirical distributions; lower bound and upper bound for uniform distribution.

Table 4
Uncertainty lognormal distribution parameters for the column height according to the bridge inventory.

Parameter Design era Min Max Mean Standard deviation

Normal column heights Pre-1971 5.0 (m) 8.6 (m) 1.880 �1.050
ðHbaseÞ 1971–1990 5.0 (m) 10.0 (m) 1.959 �1.016

Post-1990 5.1 (m) 11.3 (m) 2.031 �0.990

Ratio for tall column heights Pre-1971 0.56 4.56 0.715 0.267
(Have=Hbase) 1971–1990 0.65 4.17 0.729 0.237

Post-1990 0.49 3.97 0.697 0.232

Ratio for unbalanced frames Pre-1971 0.29 2.33 �0.005 0.237
(Hi=Have) 1971–1990 0.37 1.69 �0.023 0.208

Post-1990 0.23 2.34 0.0005 0.270
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directly affects the number of corners in the Lasso penalty ball, an
increase in the problem dimension increases the possibility of
more vanishing coefficients. This phenomenon is unlikely to occur
in the case of Ridge, simply because of the rounded boundary of the
penalty ball.

A critical step in solving a problem using Lasso is finding the
optimum value for the tuning parameter k. In the extreme limit,
k ¼ 0 reduces the problem to the least square problem, while
increasing k increases the sparsity of the resulting coefficients,
until a null model is obtained. In this paper, the typical ten-fold
cross-validation is performed to determine the optimum value of
k for which the error calculated by the cross-validation method
is smallest [32–34].

3.3. Implementation of statistical methods

In order to perform seismic analysis, 160 sets of groundmotions
selected by Baker [36] for probabilistic seismic response assess-



Fig. 4. Illustration of Eqs. (4) and (5) and the difference between the constraints of Lasso and Ridge.
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ment of bridges in California are adopted in this study to cover a
range of ground motion intensity levels and characteristics. For
each of the required finite element models discussed in Section 2,
160 numerical bridge models are generated by sampling across the
distribution of the modeling parameters using Latin Hypercube
Sampling. Then, the generated bridge models and the ground
motions are paired randomly. Nonlinear Time History Analysis
(NLTHA) is performed on the bridge models with 11,520 simula-
tions in total, considering twelve irregularity levels with reference
to the levels listed in Table 1, two abutment types, and three differ-
ent design eras (Table 2). The analysis results provide the seismic
response of each bridge component, and the peak responses are
commonly used to develop the PSDMs. The seismic responses
monitored in NLTHA are listed in Table 5, and the impact of vari-
ables is evaluated on each of these responses individually. The sta-
tistical techniques explained in the previous sections assume a
linear relationship between the response and predictors. However,
Cornell, et al. [37] proved that the relationship between the bridge
seismic response ðSDÞ and the ground motion intensity ðIMÞ is

expressed as a power function SD ¼ aðIMÞb. In logarithmic scale,
this regression is converted to a simple linear model
lnðSDÞ ¼ lnðaÞ þ blnðIMÞ where lnðaÞ and b are the regression coef-
ficients. Therefore, in this paper, the logarithmic format need to be
considered for the relationship between the bridge responses (e.g.
column curvature ductility u) and the potential predictors (e.g.
column height) to be able to implement the statistical techniques.
In order to extract the effect of various parameters in this study
(Table 2), seismic demands (lnðYiÞ) shown in Table 5 are regressed
against the ground motion intensity (X1 ¼ lnðIMÞÞ as well as the
remaining predictors (X2; . . . ;X43Þ that are considered in the trans-
formed logarithmic form. In the following sections, the results of
the sensitivity studies are presented to determine the effect of each
parameter on the bridge responses.
Table 5
Seismic demand of various components of a bridge.

Component Engineering Demand
Parameter

Units Assigned
Variable

Columns Curvature ðuÞ (cm)-1 Y1 ¼ lnðuÞ
Deck Displacement ðddÞ (cm) Y2 ¼ lnðddÞ
Foundation rotation Rotation ðhf Þ (radian) Y3 ¼ lnðhf Þ
Foundation translation Displacement ðdf Þ (cm) Y4 ¼ lnðdf Þ
Active abutment

displacement
Displacement ðdaÞ (cm) Y5 ¼ lnðdaÞ

Passive abutment
displacement

Displacement ðdpÞ (cm) Y6 ¼ lnðdpÞ

Transverse abutment
displacement

Displacement ðdtÞ (cm) Y7 ¼ lnðdtÞ

Elastomeric bearing pads Displacement ðdbÞ (cm) Y8 ¼ lnðdbÞ
Shear key Displacement ðdsÞ (cm) Y9 ¼ lnðdsÞ
4. Results and discussion

Implementing Lasso regression, a sensitivity study was com-
pleted to assess the effect of varying the entire list of modeling
covariates (Table 2) on the response of the key bridge components
including columns, abutments, and bearings (Table 5).

In order to assess the influence of potential predictors, a sensi-
tivity analysis was performed on each irregularity range individu-
ally. For example, for the case of unbalanced bridges, the analysis
was conducted for the four different ranges of column heights:
slightly, moderately, highly, and extremely unbalanced. The results
of each range are discussed in Section 4.1. These results provide
insight as to which bridge parameters (categorical and numerical)
are most important for predicting the seismic response of irregular
bridges, and if the set of predictors changes as the level of irregular-
ity (e.g. angle of skew) changes. Additionally, to provide an overall
perspective of irregular bridge performance, another analysis was
performed by considering all different ranges of irregularities in a
single group. In this case, the results of the family of tall, unbal-
anced, and skewed bridges can be more readily compared to iden-
tify which predictors are more important for different types of
bridge irregularities. Corresponding findings are discussed in
Section 4.2.

4.1. Analysis of the results for various levels of irregularity

A detailed investigation of the results for each irregularity range
is discussed in this section. The findings presented in this section
benefit structural engineers in the field of design or those in the
field of retrofit by enhancing their understanding of the irregular
bridge performance, particularly in each range of irregularity.
Selected results are shown in the tables (Tables 6–8) while a com-
prehensive list of findings is provided in the content of the follow-
ing subsections. The evaluated responses and the potential
predictors are listed in rows and columns, respectively. The shaded
cells indicate that the parameter located in that column is identi-
fied as an important predictor for estimating the response in the
corresponding row. In all cases, the ground motion intensity mea-
sure is identified as a certain predictor, as anticipated according to
the past studies [37,7].

4.1.1. Tall bridges
As explained in Section 2, three different ranges of tall bridges

are investigated in this study. Apparently, the impact of parame-
ters on the responses is varying among ranges of moderately tall,
very tall, and extremely tall bridges. An example of results for
the extremely tall level is shown in Table 6.

The eliminated parameters from all responses in all three
ranges of the tall bridge family are the superstructure box type
and the wall thickness. In addition, the restrainer length and the



Table 6
Identified influential parameters for extremely tall bridges.
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restrainer yield deformation are among the eliminated list of
parameters for the very tall bridges. The least important parame-
ters contributing to only one of the bridge responses are:

� the girder spacing and the restrainer stiffness, for moderately
tall bridges;

� the superstructure type, the top flange thickness, and the rein-
forcing steel yield strength, for very tall bridges;

� the superstructure type, the bottom flange thickness, the
restrainer stiffness, and the initial slack in restrainer, for extre-
mely tall bridges.

The most important parameters in predicting the bridge
response for three tall ranges are identified to be the mass factor,
the normal column height, and the tall ratio. The last two define
the bridge column dimension. The following parameters are also
identified among the influential parameters for most cases: the
abutment backwall height for all responses of moderately tall
and very tall bridges, the soil type for extremely tall, and the pile
spacing for moderately tall bridges. Several parameters are found
to be influential in predicting all responses except bearing dis-
placement. The list includes:

� number of columns per bent, span length, deck width, column
diameter, foundation translational and rotational stiffness, for
all three ranges;

� abutment backwall height, for extremely tall bridges;
� ground motion time step, for moderately tall and very tall
bridges;

� pile stiffness and pile spacing, for very tall and extremely tall
bridges.

Aside from the overall bridge response, a number of parameters
are highlighted in tables because of their influence on specific
responses. As an example, the number of cells affects deck dis-
placement, foundation translation and rotation in all three cate-
gories of tall bridges. The direction of applied ground motion is a
certain predictor for all responses of extremely tall bridges, how-
ever in the case of very tall and moderately tall bridges it is affect-
ing some responses including column curvature, deck
displacement, foundation translational and rotational responses,
and transverse abutment response. This shows the sensitivity of
bridge responses varies with changes in irregularity range. As
another example, even though damping ratio affects moderately
tall bridge responses, it shows less impact as the tall ratio
increases. Likewise, the influence of parameters depends on the
regarded bridge responses. For instance, the superstructure depth
is recognized as a predictor for column curvature ductility, deck
displacement, foundation translation and rotation, and transverse
abutment response, while it is not listed in the identified predic-
tors of shear key and bearing displacement. Another example is
the shear key capacity that mostly controls the shear key response,
transverse abutment displacement, and foundation translation in
all irregularity ranges, however, this variable rarely affects the
other responses. Apparently, shear key, deck, and foundation trans-
lational and rotational displacements rely on the transverse gap
between the bridge deck and the shear key.

As previously stated, Lasso picks the most significant potential
predictors in the final regression model and eliminates the ones
with negligible effects. In some problems, potential correlation
appears between the variables, and Lasso keeps the ones with
remarkable effects to reduce complexity. Design era demonstrates
this concept as it is recognized as an important predictor only in a
couple of scenarios: deck displacement of very tall and extremely
tall bridges, shear key displacement of all three ranges, and the
transverse abutment displacement of extremely tall class. This
finding should be interpreted cautiously as it does not simply
denote the minimal effect of the design era on the bridge response,
yet the results indicate that some other predictors correlated to the
design era are previously included in the model. For this problem,
longitudinal reinforcement ratio and confinement spacing that
are functions of design era are specified as critical parameters
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particularly in estimating the column curvature, deck displace-
ment, and foundation responses. Similarly, abutment type is deter-
mined as a predictor for all responses of extremely tall bridges,
while it is a predictor in a couple of responses for very tall and
moderately tall bridges, because other parameters like the longitu-
dinal gap between deck and abutment are previously accounted in
the model and are sufficient to predict the response.

Overall, speaking of the tall bridge family, a number of geometric
specifications such as the column height and tall ratio are identified
as themost influential predictors for the class of tall bridges. Among
the material properties, concrete compressive strength shows the
highest effectiveness on the bridge response. The influence of some
parameters shows similar trends for various irregularity ranges, and
they could eventually be classified as the most or least influential
predictors, although the effect of some other parameters depends
on particular responses or unique irregularity range.

4.1.2. Unbalanced bridges
As mentioned earlier, four different ranges of unbalanced

bridges are evaluated in this study. An example of the results for
the extremely unbalanced level is shown in Table 7. The important
observed trends are explained herein and more details are pro-
vided in the tables.

In the unbalanced bridge family, the most significant parame-
ters identified for almost all bridge responses are listed as the lon-
gitudinal reinforcement ratio, direction of applied ground motion,
pile stiffness, and geometric attributes including span length, col-
umn height along with the short and tall ratios, deck width and
column diameter. These geometric features are found to be less
effective on shear key and bearing displacement. The bearing
response in highly and extremely unbalanced range does not show
sensitivity to the pile stiffness. In addition, foundation translational
stiffness is highlighted in most of the responses excluding founda-
tion rotation of moderately and extremely unbalanced bridges and
shear key displacement of ranges 2–4 of unbalanced class.

The bridge responses show more sensitivity to a number of
parameters as the unbalanced irregularity range moves from the
Table 7
Identified influential parameters for extremely unbalanced bridges.
slight to the extreme. The abutment backwall height, soil type, pile
spacing and stiffness, and concrete compressive strength are exam-
ples of these parameters. Moreover, the column height, particularly
the shorter column height, shows impact on more responses as the
irregularity range increases. Additional examples are the trans-
verse gap between deck and shear key, and the longitudinal gap
between deck and abutment with no effect on the column curva-
ture, deck displacement, and foundation rotation in the slightly
unbalanced range. Unlike that scenario, as the irregularity range
increases to the extreme, the bridge response displays less sensi-
tivity to a few of the parameters including superstructure type
and girder spacing.

Parameters with the least impact on the responses include wall
and flange thickness. The superstructure depth affects the abut-
ment responses in all ranges of unbalanced irregularity, however
it influences deck, foundation, and shear key responses of slightly,
moderately, and highly unbalanced bridges. Abutment backwall
height is an important predictor to capture the abutment response
as well as the bearing response in all cases. In addition, the back-
wall height is highlighted as a predictor of deck displacement for
moderately and extremely unbalanced bridges, for foundation
translational displacement of slightly and extremely unbalanced
range, and for the column curvature ductility of extremely unbal-
anced class. In the range of moderately, highly, and extremely
unbalanced bridges, shear key capacity only influences shear key
displacement, while it affects abutment response of slightly unbal-
anced bridges.

4.1.3. Skewed bridges
As noted in Section 2, five ranges of skew angles are considered

in this study. An example of the results for the extremely skewed
level is shown in Table 8. Concentrating on the skewed bridges,
wall thickness, superstructure depth, and bottom flange thickness
are determined as the least important predictors for most of the
responses. On the other hand, span length, longitudinal reinforce-
ment ratio, and pile stiffness are diagnosed to be imperative for
all bridge responses in the entire range of skewed bridges. The



Table 8
Identified influential parameters for extremely skewed bridges.

Fig. 5. System network diagram for the class of tall bridges (Appendix B).
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column height is highlighted in most of the responses and skew
angles. According to the analysis results, multiple parameters
influence most of the bridge responses, however they indicate less
weight in estimating the shear key and bearing responses in some
ranges of skew angles. These variables include soil type, confine-
ment spacing, mass factor, deck width, foundation translational
and rotational stiffness, and top flange thickness. Another group
of parameters consists of the ones with effects on the whole
responses except the shear key. Examples of these are abutment
backwall height and pile spacing for the overall skewed bridges,
and column diameter which displays less impact on shear key for
bridges with low to very high skew angles.

A few other significant bridge attributes for skewed family are
longitudinal gap between deck and abutment, transverse gap
between deck and shear key, and skew angle. The longitudinal
gap affects most of the skewed bridge responses with a couple of
exceptions such as shear key displacement of bridges with low to
medium skew angles, and foundation rotation and transverse abut-
ment displacement in a few skew ranges. The transverse gap influ-
ences all responses of bridges with low and extreme skew angles,
while it is mostly critical for the abutment, shear key, and bearing
response of moderate, high, and very high classes.

The analysis results detected skew angle to be most effective in
predicting the majority of bridge responses listed as column curva-
ture, deck displacement, foundation rotation, abutment active and
Table 9
Comparative analysis of the identified influential parameters.
passive displacements, and bearing and shear key responses, even
though not to be significant in predicting the shear key displace-
ment of the low to medium skew levels. Compared to the afore-
mentioned responses, the skew angle is noted less effective on
controlling the foundation translation and transverse abutment
displacement of moderately, highly, and very highly skewed
bridges.

Similar to tall and unbalanced bridges, the impact of parameters
varies within various levels of skew angles. For instance, the super-
structure type and number of box cells present impact reduction as
the skew angle increases from low to very high, despite the fact
that they are important predictors for extremely skewed bridges.
Overall, the sensitivity of almost all bridge responses is enhanced
for the extremely skewed bridges compared to the other ranges.

4.2. Analysis of the results for different types of bridge irregularity

The previous section explained the effects of input parameters
on the seismic response for each irregularity range of interest.
Although the comparisons provide a comprehensive assessment
of each individual range, it makes driving a general conclusion
intricate. This section provides the analysis for the whole family
of tall (Fig. 5 in this section), unbalanced (Fig. 6 in Appendix A),
and skewed bridges (Fig. 7 in Appendix A) by considering all ranges
in a single group instead of focusing the analysis on individual
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ranges. This makes the results of the three different irregularity
types comparable.

The results confirm the significant influence of the ground
motion intensity in all cases. The longitudinal gap between deck
and abutment, a function of abutment type, is an influential predic-
tor in the total list. However, the variable corresponding to the
abutment type displays more importance on tall classes since it
contributes to every one of the responses. Deck width sounds less
important in the unbalanced class, while it shows essence in most
of the responses in the tall and skewed categories. Although super-
structure type has no impact on any of the responses of tall
bridges, it has an effect in most cases of the other two irregularity
types. Wall thickness has no impact on any of the responses. How-
ever, several parameters are detected as influential predictors for
the majority of scenarios regardless of the irregularity type. Such
variables are the column’s height and diameter, number of col-
umns per bent, span length, abutment backwall height, pile’s stiff-
ness and spacing, foundation translational stiffness, soil type,
transverse gap between deck and shear key, mass factor, damping
ratio, and ground motion characteristics.

Evidently, more predictors are involved in the final response
model of skewed bridges compared to those of unbalanced and tall,
indicating higher sensitivity of skewed bridges to the modeling
parameters. Additionally, a number of parameters are detected to
be more effective for skewed bridges than the other two irregular-
ity types. Design era is an example of this, even though the rein-
forcement detailing that is a function of design era is imperative
in most scenarios irrespective of the irregularity class. Additional
parameters include girder spacing, foundation rotational stiffness,
material properties, and shear key capacity. The mentioned obser-
vation relates to the distinctive seismic behavior of skewed bridges
and their tendency to experience larger deck displacements and
unseating between the deck and the abutment.

4.3. Comparative analysis of influential parameters

Although the applied regression analysis picked the influential
predictors among the entire list of possible covariates, the inter-
pretation is challenging to rank the final predictors. A reliable
and well-known technique to compare the importance of a predic-
tor with respect to the other ones is the partial F-test statistic [35].
In this study, the partial F-test is applied to test the hypothesis that
q coefficients are zero while the full model includes l coefficients.
This method compares the residual sum of squares (RSS) for two
separate regression models: one is the full model representing
the final Lasso regression model and the other one is the reduced
model accounting for the full model eliminating variable of interest
Xi. This method provides

F ¼
RSSreduced�RSSfull

q
RSSfull
m�l

; ð6Þ

representing the ratio of two variances. The denominator equals to
the mean squared error of the full model divided by its degrees of
freedom m� l. The numerator computes the difference in the RSS
produced by the q variables, divided by the number of eliminated
variables. Table 9 provides a comparative analysis of the influential
parameters on the bridge column response. Higher F-values are
equivalent to the lower probability of rejecting the hypothesis that
q coefficients are zero. Consequently, the variables with higher F-
values have a higher impact on the estimated response Yi. In this
study, the test was performed on individual variables (q ¼ 1) to
compare their relative importance.

The contribution of each parameter to the seismic response can
be evaluated using Table 9. Apparently, ground motion intensity
with the highest F-value is recognized as the most influential
parameter in all three irregularity types. For the other parameters,
the horizontal bars represent the single parameter contribution in
estimating the response.

According to the results, the columnheight and tall ratio aremost
heavily involved in the predicted response of tall bridges since both
control the column’s overall strength. The third significant feature is
the longitudinal reinforcement ratio dominating the column’s duc-
tility and seismic performance. The next variable with the highest
weight is the span length because of its contribution to the force
and dead load applied to the columns. Subsequent components are
pile spacing, columndiameter, concrete compressive strength, num-
ber of columns per bent, andmass factor,mainly associatedwith the
column’s seismic resistance. Moreover, one of the main observed
damage states relates to the cracking and breaking of tall piers, in
addition to the buckling of their steel reinforcements. Consequently,
stronger column bents are required to be designed for tall bridges to
resist large bending moments, shear forces, and torques.

Regarding the unbalanced frame bridges, the comparative anal-
ysis results assign the highest impact to the longitudinal reinforce-
ment ratio, span length, short and tall column height ratios,
concrete compressive strength, number of columns per bent, and
foundation translational stiffness. Similar to the tall category,
many of the parameters primarily define the column’s strength
and ductility which eventually impacts the general seismic perfor-
mance of the bridge, as columns are known as the most vulnerable
bridge components. As stated in the Introduction, according to the
post-earthquake investigations, unequal force distribution within
the columns of an unbalanced bridge causes the column’s damage
leading to the superstructure’s failure. A number of noted signifi-
cant parameters including the span length and the column height
ratios control the force distribution among various columns within
a bridge frame. As a result, particular attention in designing shorter
columns, particularly the ones adjacent to the very tall columns, is
necessitated to increase their seismic resistance and enhance the
overall performance of the bridge.

Compared to the tall and unbalanced irregularity, skew increases
the sensitivity of bridge responses to the uncertain parameters. The
results imply higher importance of the longitudinal reinforcement
ratios, columndiameter, number of restrainers,mass factor, number
of columns per bent, column height, pile spacing and stiffness,
design era, shear key capacity, skew angle, confinement spacing
and deck width, versus the remaining significant predictors. The
post-earthquake investigation of skewed bridges showed serious
damage caused by displacement or unseating of the bridge deck
and larger demands including column forces. Apparently, every
one of the outlined parameters significantly contributes in both
demands. The column specifications such as column diameter and
height aswell as the reinforcementdetailingprovide thegeneral col-
umn’s durability. Besides, span length, deck width, pile properties,
skew angle, and shear key capacity contribute more on the other
demands such as the deck displacements that indirectly have an
effect on the column’s demand.

The significance of individual influential parameters contribut-
ing to each class of irregularity is compared above in Table 9. The
statistical analysis reveals that the commonly detected parameters
including ground motion intensity, longitudinal reinforcement
ratio, column diameter, number of columns per bent, column
height, span length, and concrete compressive strength signifi-
cantly influence the response of all three studied irregular bridges.
Amongst these, longitudinal reinforcement ratio dominates the
column response, as the horizontal bars in Table 9 show.
5. Conclusions

In order to improve our understanding of the seismic perfor-
mance of irregular bridges, this study examines the influential
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parameters of irregular bridges by performing sensitivity analyses
of skewed, tall columns, and unbalanced bridge frames. This study
is beneficial in enhancing the knowledge regarding the effect of a
broad range of parameters, associated with the finite element
bridge models, on the seismic response of bridges with geometric
irregularities in their configuration.

Moreover, in contrast to the previous sensitivity studies, cate-
gorical regression analysis is conducted to uncover the influence
of variables affecting the seismic responses. This is advantageous
since a number of parameters that describe irregular bridges are
categorical in nature or can be easily classified as such in order
to simplify database development regarding bridge characteristics
that inform vulnerability modeling. A robust and reliable statistical
tool, Lasso Regression, is implemented in this paper providing the
opportunity to involve both categorical and numerical covariates
in the regression model. The presented results reveal that the influ-
ence of a parameter varies with increasing irregularity ranges. For
instance, bridges with skew angles beyond the medium level and
particularly beyond 60� display higher sensitivity to the modeling
parameters. Similar trends are observed for tall and unbalanced
categories.

This paper implements statistical techniques to explicitly iden-
tify the most and the least influential parameters on the bridge
responses related to the column, deck, foundation, abutment, bear-
ing, and shear key. Although the relative significance of the various
predictors changes over different bridge responses and irregularity
ranges, there exist many common influential parameters including
ground motion intensity, longitudinal reinforcement ratio, column
Fig. 6. System network diagram for
diameter, number of columns per bent, column height, span
length, and concrete compressive strength.

The influential parameters identified in this paper should to be
included in the seismic demand modeling of irregular bridges. In
order to accomplish this, bridge databases are required to be
enhanced to provide realistic information for the influential
parameters. Where the information is not accessible, suitable
uncertainty in the assignment of these parameters need to be con-
sidered in the modeling of bridge performance. It is found that
irregularity parameters play essential roles in the seismic response
estimations for almost all scenarios. Although the statistical
approach is applied herein for identifying significant parameters
affecting concrete box-bridges, the similar methodology can be
applied to other bridge types such as steel-girder, T-girder, and
slab bridges. Since the current study was performed based on rep-
resentative bridge models with existing bridge characteristics, the
results are advantageous in informing regional seismic risk and fra-
gility assessment of irregular bridges.
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the class of unbalanced bridges.



Fig. 7. System network diagram for the class of skewed bridges.

Table 10
Values for the coefficients in Eq. (7).

Coefficients Values Coefficients Values Coefficients Values Coefficients Values

Intercept (b0) 11.673 b7nine�cells
�0.199 b18 �1.270 b33 �0.619

b1 1.133 b7eleven�cells
�0.278 b19 �0.279 b35 �0.020

b2seat
1.988 b8trans

0.142 b20 0.167 b36 �0.505
b4two�col

�0.942 b9 2.185 b21 �5.288 b37 2.205
b4three�col

4.638 b10 �2.012 b22 0.058 b38 0.162
b4four�col

3.518 b11 �0.073 b23 0.223 b39 �0.275

b4five�col
2.81 b13 8.382 b26 �0.021 b41 �1.421

b5sand
0.078 b16 0.419 b28 �0.607

b7seven�cells
�1.582 b17 �4.425 b29 �1.116
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Appendix B

An example of the statistical response surface model is pre-
sented for the column’s response of the tall bridge class as
lnðŶ1tall Þ ¼ b0 þ b1 lnðX1Þ þ
X8
j¼2

bjXj þ
X43
j¼9

bjlnðXjÞ; ð7Þ
where the coefficients are listed in Table 10. In Eq. (7), bj and Xj

(j ¼ 2; . . . ;8) are shown as vectors since they include dummy vari-
ables for each categorical variable.
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