






Figure 2. Feature importance in the top scoring model fit.

said, feature importance ranking provided in Figure 2 impli-
cates the relative importance of the input parameters. However,
correlation analysis is planned to be performed in the future
phase of the project.

CONCLUSION AND FUTURE WORK
In this paper, we reported on the progress that we have made
on building a robust model that can predict the admission sta-
tus of applicants to the online Master’s program at Georgia
Tech. First, we were successfully able to process a massive
amount of data from more than 9,000 candidates and reduce
the dimensional complexity of the raw data. Through data
processing, we identified 154 key variables to construct the
matrix of the input variables for predictive modeling. We were
also able to train the model and test model performance with
reasonably high accuracy by using various machine learning
algorithms. These results from our preliminary analyses sug-
gest that data from graduate program applicants, including our
OMSA applicant dataset, can provide a rich and promising
basis so for applying machine learning techniques.

In the next steps of the project, we plan to expand the scope
of our dataset and feature processing in several ways. Beyond
whether an applicant was admitted to the OMSA program, we
will use applicants’ data to model the successful completion
of the Analytics program. To do that, we will initially build
models to predict students’ grades in three core courses of the
program. Then, based on those models’ performance, we will
construct models for predicting whether students drop out of
the program, graduate on time, and land a job in analytics. Ad-
ditionally, we plan to incorporate techniques such as Shapley
Additive Explanation to ensure that our models do not dis-
criminate based on demographic factors. Ultimately, we hope
that our research will offer useful guidance for the OMSA
program’s admission process and help administrators make
informed decisions contributing to program improvement.
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