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Abstract: Optimizing the serviceability of highway bridges is a fundamental prerequisite to provide
proper infrastructure safety and emergency responses after natural hazards such as an earthquake. In
this regard, fragility and resilience assessment have emerged as important means of describing the
potential seismic risk and recovery process under uncertain inputs. Generating such assessments
requires estimating the seismic demand of bridge components consisting of piers, deck, abutment,
bearing, etc. The conventional probabilistic model to estimate the seismic demands was introduced
more than two decades ago. Despite an extensive body of research ever attempting to improve
demand models, the univariate demand model is the most common method used in practice. This
work presents a comprehensive review of the evolution of demand models capturing machine-
learning-based methodologies and their advantage in comparison to the conventional model. This
study sheds light on understanding the existing demand models and their associated attributes along
with their limitations. This study also provides an appraisal of the application of probabilistic demand
models to generate fragility curves and subsequent application in the resilience assessment of bridges.
Moreover, as a sound reference, this study highlights opportunities for future development leading
to enhancement of the performance and applicability of the demand models.

Keywords: probabilistic seismic demand model; bridge seismic performance; seismic hazard analysis;
seismic fragility assessment; resilience assessment

1. Introduction

Demand models are principal components of the performance-based assessment of
bridges in which their behavior is evaluated in a postulated seismic hazard scenario. In
this process, various sources of aleatory and epistemic uncertainties [1] are involved that
are considered in the probabilistic seismic demand analysis (PSDA) [2]. This leads to
developing probabilistic seismic demand models (PSDMs), initially introduced by Shome
et al. [3], from which fragility curves are generated to provide the probability of exceeding
discrete levels of bridge performance. Both PSDMs and fragility curves are used in loss
estimation, resilience analysis, and lifecycle assessment. Thereby, how well a PSDM
predicts seismic demands directly governs the outcome of risk assessment and subsequent
inferences and decisions. Nonetheless, developing or selecting a practical framework for
PSDM is a challenging task itself.

To estimate the seismic demand of bridge components consisting of piers, deck,
abutment, bearing, etc., the PSDMs were initially formulated about two decades ago. For
a particular bridge component and a specific engineering demand parameter (EDP), this
formulation provides an estimate of the median value of the demand as a power-law
function of a ground motion intensity measure (IM), while it is formed based upon the
log-normality assumption of the seismic demands [3,4]. For decades, this conventional
form of PSDM has been widely used in the seismic risk analysis of bridges in practice.
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However, thriving advanced statistical and machine-learning methodologies have led to
developing more efficient yet simple PSDMs with the most influential set of predictors. The
conventional model can be improved in multiple aspects. For example, from a structural
point of view, additional sources of uncertainties such as bridge modeling parameters
can be incorporated into the formulation. Additionally, instead of using a single intensity
measure, additional ground-motion (GM) characteristics can be counted in the list of
predictors. From a statistical analysis point of view, the prediction accuracy of the models
can be improved by applying more advanced and promising ML algorithms.

ML methodologies and their applications have evolved drastically over recent years
to handle large-scale, complex problems. Consequently, natural hazards engineering is
benefiting from the promise of ML approaches to facilitate decision making. In essence,
PSDMs can be substantially improved by leveraging ML methods to manage complex
datasets, treat various sources of uncertainties, and propose computationally efficient
solutions. While a substantial body of research has been conducted during the recent
decade to enrich the conventional model, none was found as the most superior one, and
the implementation of ML in this domain is still in its early stages. Furthermore, each study
is limited to a specific bridge type, a certain number of random variables as the predictors,
selective model formats (linear or nonlinear), certain ML or statistical approaches, and
specific assumptions. Moreover, there is a clear need to explore the improvements that have
been conducted in this space and create an overview of the existing PSDMs that can be
useful for research and practice. This can further support structural and bridge engineers
to choose the most suitable PSDM based on the requirements in the existing models and the
particularities in a real-world problem. Toward advancing PSDMs, it could be beneficial for
researchers to determine the best way to expand the formulation by understanding which
factors have been considered and which aspects need further investigation.

PSDMs are extensively used in the process of fragility analysis and resilience assess-
ment of bridges. In this process, demand models are combined with the capacity and hazard
models to describe structural performance. The general framework is presented in Figure 1
to provide an overview of the entire process, from generating probabilistic seismic demand
models to their application in quantifying resilience. Collectively, the literature contains a
wide range of definitions, metrics, and measurement techniques for infrastructure resilience
quantification; however, there is a consensus in all proposed approaches in which resilience
is defined as a function of the key performance indicator that best describes the perfor-
mance of an asset. As demonstrated in Figure 1, in a PSDM-based resilience assessment,
the resilience index is a function of both performance function/indicator/curve and the
fragility analysis. Section 3 provides a critical review of the application of demand models
in deriving the fragility curves and different techniques in resilience index quantification.

To address the aforementioned needs, this study presents a comprehensive state-of-
the-art review of the proposed alternative demand models along with an explanation of
their progress and theoretical aspects, advantages they offer over the conventional model,
assumptions considered, and challenges. In particular, this study is interested in the efforts
made toward applying machine-learning algorithms to improve bridge PSDMs and mainly
focuses on the fundamental attributes of applying different methods rather than a critique
of the mathematical frameworks. The existing models are compared in the context of their
performance, simplicity, considered sources of uncertainty, GM characteristics counted in
the model, and development complexity. Furthermore, the study presents an overview
of the application of probabilistic seismic demand models and fragility curves in risk
and resilience assessment. As the implementation of ML methods is growing, this study
elucidates potential opportunities to promote a broader application of ML advances in
enhancing PSDMs as a part of addressing needs in natural hazards engineering.

Literature Search Strategy

A structured search strategy was employed to provide an overview of the state-of-the-
art literature on machine-learning applications in probabilistic seismic demand models.
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Our literature review focused on machine-learning approaches and probabilistic seismic
demand models, specifically for bridges with the identified keywords: ‘probabilistic seismic
demand models’, ‘bridge seismic performance’, ‘bridge seismic vulnerability’, ‘bridge
seismic resilience’, ‘seismic hazard analysis’, ‘fragility analysis’, and ‘resilience’. Whilst
there is a wide range of studies considering different hazards and different structure types,
for the current study, the selected sources were preprocessed to focus the review on seismic
hazards (earthquakes) and their impact on bridges.
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For the purpose of this study, three literature lists were considered and critically
reviewed. These include a primary list of literature following a direct search using the
identified keywords. The second list includes the citation from the primary list to perform
a forward search, and the reference in both former lists was used for the backward search.
Figure 2 provides an overview of the temporal and spatial distribution of the search findings
for each keyword.
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Figure 2. Temporal and spatial distribution of the initial literature search: (a) temporal distribution
and (b) spatial distribution. (Adopted from Scopus—note that the spatial distribution only covers
countries with more than 2% share of the total number of publications).

Our literature sources include all published journal articles, conference proceedings,
and well-cited technical reports. The temporal scope of the search was limited to all
publications between 2000 and 2020. For this study, Google Scholar and Scopus were used
as search engines. Following the initial screening (to assess the relevance to the subject
domain), the combined final literature content resulted in a list of 97 articles, proceedings,
and reports, and are provided in the reference list.
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2. Seismic Vulnerability Assessment Using PSDMs
2.1. Description of PSDM and Univariate Linear Model

Defining performance objectives, commonly introduced as the mean annual frequency
of decision variable (DV) exceeding a predefined limit value z (Equation (1) [4]), are es-
sential elements to inaugurate a probabilistic performance-based framework. This annual
probability is aggregated from measuring damage (DM > y) for EDP conditional to the seis-
mic intensity measure (IM > w), assuming that these components are mutually independent.
The parameters y and w correspond to the damage threshold/limit state corresponding to
the bridge component and the ground motion intensity of interest corresponding to the
bridge location, respectively.

vDV(z) =
∫
y

∫
w

GDV|DM(z|y)|dGDM|IM(y|w)|dλIM(w) (1)

To this end, Mackie and Stojadinovic [2] presented the development procedure of
PSDM for typical highway overpass bridges. In their study, PSDM expressed demands as a
function of IMs. They defined an optimal PSDM to be practical, sufficient, effective, and
efficient. Effectiveness of a PSDM is defined as being able to find a closed-form solution [4]
for Equation (1). To satisfy such a criterion, a log-normal distribution is assumed [3,5] for
the structural demand based on which the conventional demand model was formed by a
power-law model as Equation (2), where a and b are the regression coefficients, to estimate
the median value of demand.

µDM = a(IM)b (2)

To build a practical PSDM, there should be a direct correlation between the demands
simulated by the dynamic analysis and practical engineering quantities. To this end,
known GM parameters need to be used, yet the relation between IM and EDPs should be
independent of the GM characteristics to establish a sufficient PSDM.

Essential steps are required for the successful development of practical and sufficient
PSDMs [2], including prudent choice of: a proper suite of GM, an appropriate measure of
GM intensity, structural seismic demand measures, and a suitable range of bridge modeling
parameters. The PSDMs are typically formulated by statistical analysis of the results of
nonlinear dynamic analysis (time history analysis (THA) or incremental dynamic analysis
(IDA)) of bridges exposed to a suite of GMs. The GMs need to be selected in an unbiased
manner and in a way to capture the seismicity of the region where the bridge is located.

The initial and simplest PSDM formulation introduced in Equation (2) is equivalent
to a univariate linear regression model in log–log coordinate space (Figure 3). This linear
relationship is expressed in Equation (3), which has been extensively used for decades
by researchers to analyze the seismic demand of bridges with various configurations
(e.g., [6–11]). The variability in the demand values is expressed in terms of dispersion
βDM (Equation (4)), which is calculated from the natural logarithm of the regression
residuals. In the performance evaluation of the PSDMs, a small dispersion value indicates
the model’s efficiency.

ln(µDM) = ln(a) + b ln(IM) (3)

βDM =

√
∑n

i=1[ln(SDi)− (ln(a) + b ln(IMi))]
2

n− 2
(4)

In Equations (3) and (4), SD represents the value of seismic demand obtained from
nonlinear dynamic analysis, and n is the total number of recorded responses. Although
researchers used different IMs in their proposed PSDMs, a unified conclusion has not been
made among them to recommend a single IM for bridges. For example, Freddi et al. [12]
found spectral acceleration at 1.0 s period (Sa(1.0 s)) and peak ground velocity (PGV)
as the most efficient structure-independent IMs, while Ma et al. [13] noted peak ground
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acceleration (PGA) as the best IM for the drift ratio model of the bridge columns. More
discussion on this topic is provided later in the Discussion section.

2.2. Alternative Statistical Models for Seismic Demand Regression

Although the traditional PSDM is known as the simplest model for developing de-
mand models of bridge components, it suffers from several limitations that can lead to
inaccurate prediction of the demands and questionable reliability of the associated fragility
and resilience evaluations. Researchers attempted to improve the traditional formula-
tion of PSDMs (explained in the previous section) in several different aspects by using
diverse approaches. In one aspect, over the years, researchers improved bridge models
(e.g., [14,15]). Utilizing the latest bridge modeling and analysis tools provide the feasibility
of incorporating prevailing sources of epistemic and aleatory uncertainties [16] inherent
in the process of PSDA. In another aspect, sensitivity studies around the choice of GMs
(near-field versus far-field) (e.g., [13]) and pertinent characteristics (e.g., [17]), soil condi-
tions (e.g., [18]), geometric and material parameters (e.g., [19]), irregularities in a bridge
configuration (e.g., [20]), pier shapes (e.g., [21]), and bridge portfolios (e.g., [22]) helped
to understand how the bridge seismic performance is sensitive to these variations. In this
section, we differentiate the progress paths of enhancing probabilistic demand models
according to the implemented algorithms. The theoretical aspects of the models considered
by different researchers are briefly described in each subsection, while details of the de-
mands investigated, the uncertain parameters considered and the ground motion intensity
measures, class of bridges studied, and the methodologies implemented are provided in
Table 1. Table 2 provides the key aspects of reviewed literature.
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Table 1. Summary of main contributions to propose alternative PSDMs for bridges.

Study Bridge Demand
Parameters

Intensity
Measure

Investigated Input Uncertain
Variables in the Formulation Bridge Type Methodology

Huang, Q.,
Gardoni, P.,

and
Hurlebaus, S.,

2010 [23]

Seismic univariate
deformation and shear,
bivariate deformation–

shear demands

Pseudo-spectral
acceleration and peak

ground velocity

12 parameters including span
length, column height, column

diameter-to-superstructure depth
ratio, reinforcement nominal

yield strength, concrete nominal
strength, longitudinal

reinforcement ratio, transverse
reinforcement ratio, degree of

skew, bridge dead load, pile soil
stiffness, abutment models,

two-span ratio

Reinforced concrete
highway bridge with

single-column bent and
two spans

Correction term as a
set of explanatory

functions;
using Bayesian

updating approach

Ma, H.B.,
Zhuo, W.D.,

Yin, G., Sun, Y.,
and Chen, L.B.,

2016 [24]

Maximum drift ratio at
top of piers

The spectral
acceleration at the

fundamental period
with 5% damping

One parameter: fundamental
period (T)

Single column, regular
continuous concrete

highway bridges with
three spans in

China—8 representative
regular

highway bridges

Multiplicative factor
as a function of

fundamental period
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Table 1. Cont.

Study Bridge Demand
Parameters

Intensity
Measure

Investigated Input Uncertain
Variables in the Formulation Bridge Type Methodology

Soleimani,
2017 [11]

Column curvature
ductility,

abutment displacement

Spectral acceleration
at 1.0 s

One parameter corresponding to
a geometric irregularity such as
skew angle, tall column height,

and unbalanced frame
stiffness ratio

Box-girder concrete
bridges in California

Mathematical
optimization
techniques;
Levenberg–

Marquardt method;
Bayesian updating

Xie, Y., Zhang,
J., DesRoches,

R., and
Padgett, J. E.,

2019 [17]

Uplift demand (column
drift ratio and normalized

uplift angle)

Peak ground velocity,
frequency duration,
cumulative absolute

velocity of exceedance,
frequency at the largest

spectral velocity

Rocking frequency parameter,
effective height

Single-column concrete
box-girder bridge with

rocking isolation
in California

General linear model
with

stepwise regression

Soleimani, F.,
Vidakovic, B.,
DesRoches, R.,
and Padgett, J.
E., 2017 [20]

Column curvature
ductility, foundation

rotation and displacement,
displacement of deck,

abutment, bearing, and
shear key

Spectral acceleration
at 1.0 s

42 categorical and numerical
parameters including modeling,

structural, material, and
geometric characteristics

of bridges

Concrete box-girder
bridges in California

with: (i) skew angle, (ii)
a frame with

unbalanced stiffness,
and (iii) tall

column heights

General linear model
with LASSO

Xie, Y. and
DesRoches, R.,

2019 [18]

Column displacement
ductility, displacements of

abutment, foundation,
bearing, and shear key

Spectral acceleration
at 1.0 s

18 random variables
corresponding to soil-structure
interaction that cover different

soil zones

A two-span prestressed
concrete box-girder

bridge in California and
supported on

diaphragm abutments
and a two-column

central bent

General linear model
with stepwise
regression and

LASSO

Seo and
Linzell,

2013 [25]

Peak radial bearing
deformations, peak
tangential bearing

deformations, peak radial
abutment deformations
directly adjacent to the

bearing seats, peak
tangential abutment

deformations directly
adjacent to the bearing

seats, column
curvature ductility

Peak ground
acceleration

13 macrolevel and microlevel
parameters;

number of spans, maximum span
length, deck width, maximum

column height, radius of
curvature, girder spacing,

cross-frame spacing, damping
ratio, compressive and tensile

strength and Young’s modulus of
concrete, steel reinforced

modulus and yield strength

Horizontally curved
steel I-girder bridges in

Pennsylvania, New
York, and Maryland

2nd order polynomial
response

surface model

Ghosh, J.,
Padgett, J.E.,
and Dueñas-
Osorio, L.,
2013 [26]

Column curvature
ductility, longitudinal and
transverse deformations

of bearings and abutment

Spectral acceleration at
the geometric mean of

periods in the
longitudinal and

transverse directions

10 parameters including steel
strength, elastomeric bearing pad

friction and gap and bar area,
column reinforcing bar area,

shear modulus of elastomeric
bearing pads, concrete cover

depth, column height, midspan
length, number of columns

per bent

Multispan (three-span
three columns per bent)

simply supported
concrete girder bridge

2nd order polynomial
response surface

model, multivariate
adaptive regression
splines, radial basis
function networks,

and support
vector machines

Pan, Y.,
Agrawal, A.K.,
and Ghosn, M.,

2007 [27]

Pier curvature, high and
low type rocker

bearing displacement

Peak ground
acceleration, moment

magnitude, and
epicentral distance

Not available
Continuous multispan
I-girder steel highway

bridge in New York

General linear model
and 2nd order

polynomial response
surface model

Seo and
Linzell, 2010,
2012 [28,29]

Peak radial bearing
deformations, peak
tangential bearing

deformations, peak radial
abutment deformations
directly adjacent to the

bearing seats, peak
tangential abutment

deformations directly
adjacent to the bearing

seats, column
curvature ductility

Peak ground
acceleration

Number of spans, maximum
span length, radius of curvature,

girder spacing,
cross-frame spacing

Horizontally curved
steel I-girder bridges in

Pennsylvania, New
York, and Maryland

2nd order polynomial
response

surface model

Park and
Towashirapor,

2014 [30]

Seismic damage of
bearings, piers, and

abutments in terms of the
maximum value of a

response, such as
displacement or curvature

Peak ground
acceleration

Physical configuration of the
bridge including the number of

spans, span length, and
pier height

Five span steel-plate
girder bridges in Korea

2nd order polynomial
response

surface model
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Table 1. Cont.

Study Bridge Demand
Parameters

Intensity
Measure

Investigated Input Uncertain
Variables in the Formulation Bridge Type Methodology

Seo and Park,
2017 [31]

Peak responses
corresponding to radial
and tangential abutment
components, radial and

tangential bearing
components, and

pier columns

Peak ground
acceleration

Number of spans, maximum
span length, deck width,

maximum column height, radius
of curvature, girder spacing,

cross-frame spacing

Curved steel I-girder
bridges in Eastern

United States

2nd order polynomial
response

surface model

Du, A.,
Padgett, J. E.,

and
Shafieezadeh,
A., 2018 [32]

Column drift,
displacement of expansion

bearings and
displacement of
fixed bearings

One parameter from
spectral acceleration

and geometric mean of
spectral accelerations at
several periods, a total
of four one-parameter
adaptive IMs and two

fractional-order
adaptive IMs

16 structure-related parameters
for concrete bridge class and 14
structure-related parameters for

slab bridge class

Two case-study
highway bridge classes

(multispan simply
supported concrete
girder bridges and

multispan continuous
slab) in Central and

Southeastern
United States

2nd order polynomial
response surface

model with
stepwise regression

Mangalathu
and Jeon, 2019

[33]

Column curvature
ductility, displacement of

abutment and bearing,
and

superstructure unseating

Spectral acceleration
at 1.0 s

23 parameters including
geometric, material, and

structural
modeling characteristics

Three four-span
concrete box-girder

bridges in California
Random forest

Soleimani,
2021 [34]

Column curvature
ductility, displacement of

deck, abutment,
and bearing

Spectral acceleration
at 1.0 s

24 parameters including
geometric, material, and

structural
modeling characteristics

Multispan concrete
box-girder bridges with

tall piers within low,
medium, and high

column height ratios

Random forest

Pang, Y., Dang,
X., and Yuan,
W., 2014 [35]

Curvatures of cross
sections of columns,

displacements of bearings
and abutments

Peak ground
acceleration

16 selected material properties
(four parameters for the confined
concrete and three parameters for

the unconfined concrete) and
geometric parameters (span
length, column height, deck

width, column diameter, gap
between girder and abutment

and concrete cover)

Three-span continuous
bridge with two

columns per bent
in China

Multilayer radial
basis function

neural networks

Mangalathu,
S., Heo, G.,

and Jeon, J.S.,
2018 [36]

Curvature ductility of
column, maximum

displacement of
abutments, maximum

deformation of bearing,
maximum unseating

deformation
of superstructure

Spectral acceleration
at 1.0 s

23 parameters including
categorical variables (e.g., the
number of columns per bent,

backfill type), numerical
variables (e.g., the number of

spans, the number of columns),
and continuous variables (e.g.,

span length, concrete
compressive strength)

Two-, three-, and
four-span skewed

concrete box-girder
bridge with single and
two columns per bent

and seat abutment

Artificial neural
networks with

sigmoid activation
function (one hidden

layer with
10 neurons)

Kameshwar
and Padgett,

2018 [37]

Shear and moment
demands on bridge

columns

Peak ground
acceleration

32 parameters design and
geometric parameters related to

superstructure, column, and
sub-structure elements together

with soil parameters and the
barge collision conditions

Simply supported
bridges (with six simply

supported spans) on
navigable waterways

with large circular,
elliptical, or wall type
columns supported on

pile foundations

4th order polynomial
response surface

model with stepwise
regression

Kameshwar
and Padgett,

2014 [38]

Peak column curvature
ductility, abutment and
bearing displacements

Peak ground
acceleration

Concrete nominal strength,
reinforcement yield strength,

span length, column height and
diameter, width of deck, number

of spans, longitudinal and
transverse reinforcement ratios

Multispan simply
supported concrete

girder bridges located
in South Carolina

Polynomial response
surface models with

three orders, adaptive
basis function
construction,

multivariate adaptive
regressive splines,
and radial basis

function interpolation

Du and
Padgett, 2019

[39]

Column drift ratio,
longitudinal and

transverse deformation of
expansion bearings and

fixed bearings,
abutment deformations

Spectral acceleration at
the geometric mean of

periods in the
longitudinal and

transverse directions

14 parameters for concrete
bridges

16 parameters for steel bridges

Two case studies:
simply supported

concrete girder and
continuous steel girder

bridge type

Multivariate linear
regression, linear and

partial kernel 2nd
and 3rd order

(L-PLSR and K-PLSR),
artificial neural
networks with a

single hidden layer
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Table 2. Key aspects of the sample studies reviewed in this article.

Study Key Aspects Applicability Case Studies

Gardoni, P., Mosalam, K.M., and Der
Kiureghian, A., 2003 [6]; Choe, D. E., Gardoni,
P., Rosowsky, D., and Haukaas, T., 2009 [40];

Zhong, J., Gardoni, P., and Rosowsky, D., 2009
[41]; Huang, Q., Gardoni, P., and Hurlebaus, S.,

2010 [23]

Produced probabilistic model from deterministic;
moderate bias; improve accuracy General type of bridges

Ma, H.B., Zhuo, W.D., Yin, G., Sun, Y., and
Chen, L.B., 2016 [24]

Proposed simplified empirical expression for drift
ratio of the bridge columns General type of bridges

Soleimani, 2017 [11] Proposed modified PSDMs to derive EDPs of
irregular bridges; stiffness frames of bridges

Irregular bridges including skew angle,
tall piers, and unbalanced stiffness

frames of bridges.

Xie, Y., Zhang, J., DesRoches, R., and Padgett,
J.E., 2019 [17]

Accounted for rocking isolation parameters;
estimated full contact damage, rocking, and

overturning probability of the bridge column
General type of bridges

Soleimani, F., Vidakovic, B., DesRoches, R.,
and Padgett, J.E., 2017 [20]

Identified influential uncertain parameters for
bridges with geometric irregularities Bridges with geometric irregularities

Xie and Desroches, 2019 [18]
Investigated the sensitivity of seismic demands to

variation in its soil-structure interaction (SSI)
modeling parameters

Typical highway bridge

Seo and Linzell, 2013 [25];
Seo and Linzell, 2010 [28];
Seo and Linzell, 2012 [29]

Examined the influence of important parameters on
their seismic response Horizontally curved steel I-girder

Gosh, J., Padgett, J.E., and Dueñas-Osorio, L.,
2013 [26]

Explored four different metamodeling strategies to
predict bridge responses General type of bridges

Pan Y., Agrawal, A.K., and Ghosn, M.,
2007 [27]

Performed an analytical seismic fragility analysis
along with sensitivity assessment if seismic response

to variations in superstructure mass, gap size,
concrete compressive strength, reinforcing bar yield
stress, friction coefficient of expansion bearing, and

abutment wall–soil stiffness

Typical steel highway bridge

Park and Towashiraporn, 2014 [30] Used response surface model to median and
variation in seismic damage Steel-plate-girder bridges

Du, A., Padgett, J.E., and Shafieezadeh, A.,
2018 [32]

Established systematic optimization process to
adaptively identify the optimal IM parameters to

characterize the correlation between IMs and
structural responses

General type of bridges

Seo and Park, 2017 [31] Generated restoration curves Portfolio of regional curved
I-girder bridges

Mangalathu and Jeon, 2019 [33] Generated bridge-specific fragility curves using
random forest General type of bridges

Soleimani, 2021 [34] Conducted sensitivity analysis of seismic demands Bridges with tall piers

Pang, Y., Dang, X., and Yuan, W., 2014 [35]

Proposed an artificial neural network-based
prediction scheme to replace the extremely

time-consuming process in traditional analytical
fragility methodologies

General type of bridges

Mangalathu, S., Heo, G., and Jeon, J.S.,
2018 [36]

Investigated the applicability of artificial neural
network in the generation of seismic fragility curves

for regional risk assessment of bridges to reduce
computationally intensive procedure

General type of bridges

Kameshwar and Padgett, 2018 [37]

Developed parameterized polynomial response
surface models to predict the shear and flexural

response for a wide range of bridge characteristics
and collision conditions without

model-based simulation

General type of bridges
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Table 2. Cont.

Study Key Aspects Applicability Case Studies

Kameshwar and Padgett, 2014 [38]
Generated parametric bridge fragility functions for

bridges with different geometric and structural
properties given exposure to different hazard types

General type of bridges

Du and Padgett, 2019 [39] Provided a comparative study of four different
multivariate surrogate demand modeling approaches General type of bridges

A few studies (e.g., [11,23,24]) slightly modified the original formulation of PSDM by
involving additional terms. As an example, Ma et al. [13] added a multiplicative factor,
as a function of the fundamental period (T) of the bridge, to both constant and coefficient
of the PSDM in log–log space. The proposed empirical model for the considered EDP,
the maximum drift ratio at the top of piers of the studied single-column regular concrete
bridge, was expressed as:

ln(µDM) = ln(a)
[
10− 4.36T + 1.1T2]+b[10− 1.82T + 0.36T2

]
ln(Sa) (5)

Another example is the corrective term introduced by Gardoni et al. [6], Choe et al. [40],
Zhong et al. [41], and Huang et al. [23] using a Bayesian approach. For example, Huang
et al. [23] presented this framework for the seismic deformation, shear, and bivariate
deformation–shear demands of RC bridges with one single-column bent. The corrective
terms are added to the commonly used deterministic demand models to produce proba-
bilistic models and to moderate the bias. The corrective term as expressed in Equation (6) is
a function of model parameters including unknown parameters. Huang et al. [23] adopted
Bayesian updating to assess the unknown model parameters and select the correction
terms, accordingly. To find an optimal corrective term, a set of explanatory functions were
considered, from which γ was formed with respect to the structural properties and the
GMs characteristics.

SD(x, Θ) = d̂(x) + γ(x,θ) + σε (6)

In Equation (6), d̂ represents the calculated demand by the deterministic model. In
addition, x is a vector of input parameters (such as material properties, member dimensions,
and boundary conditions); Θ is a vector of unknown modeling parameters (i.e., θ) of the
deterministic model and its standard deviation (σ); and ε stands for a normal random error
with zero mean and unit variance.

Many researchers utilized the traditional form of PSDM to investigate the influence of
irregular configurations such as skew angle (e.g., [11,42]), curvature (e.g., [43,44]), and tall
or nonuniform column heights (e.g., [45–47]) on the produced PSDMs of bridges. As an
example, Tondini and Stojadinovic [43] evaluated the bridge drift ratio of curved five-span
box-girder concrete highway overpass bridges with single circular column bents using
both nonlinear static and dynamic responses. The demand in the transverse direction
was significantly affected by the bridge deck radius, while this effect was negligible in
the longitudinal direction. In line with findings from Freddi et al. [12], Tondini and
Stojadinovic [43] found structure-dependent IMs (e.g., Sa(T1)) more efficient than the
independent IMs as the former ones induce smaller dispersion values. Among the studies
that focused on irregular bridges, a few introduced modifications to the PSDMs.

A more complex modification of PSDMs for irregular bridge configurations was
proposed by Soleimani [11] in which both constant and coefficient terms of the traditional
PSDM (Equation (2)) were replaced by functions of the geometric irregularity parameters
(τ) such as skew angle, column heights taller than the normal range, and unequal stiffness
between the frames (Equation (7)). Linear functions were found as the best format to be
used since monotonic trends were observed between the changes in demands and the
variations of the irregularity parameters. The Levenberg–Marquardt method and Bayesian
updating were implemented to optimize function parameters.
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µDM = (a0 + a1τ)(IM)(b0+b1τ) (7)

2.3. Multivariate Linear Regression and Feature Selection Techniques

The widely used conventional form of PSDM (Equation (3)) expresses the relation
between a single response variable (i.e., estimated seismic demand (ŜD)) and a single
predictor variable (i.e., IM). This form can be extended to multivariate linear regression
(MLR) that relates a single response to multiple predictors. The generated response surface
models (RSM) can replace complex and time-consuming computational models (e.g., FEMs).
Further, the MLR can be extended to a more general format using multivariate multiple
linear regression (MMLR) (e.g., [48]) in which a vector of response variables within the same
structure is expressed as a function of a vector of predictor variables. Basically, the latter two
models yield equal regression coefficients and residual variance for individual responses.
The advantage of using MMLR is automatically computing the residual correlation between
the responses, which is beneficial for joint calculation of response measures in the process
of damage estimation.

As an extension of univariate PSDMs, researchers proposed MLR-based PSDMs to
incorporate the effect of structural modeling parameters together with the geometric and
material properties of bridges. Although including all associated random variables and
sources of uncertainties seem logical, including all variables in the model increases the risk
of data overfitting, complexity, and computational time [49]. Hence, a few of the previous
works (e.g., [17,18,20]) moved a step forward and implemented feature selection techniques
to optimize the generated MLR.

2.3.1. Stepwise Regression

Researchers incorporated feature selecting techniques to identify the most influential
subset of predictor variables to be included in the final PSDM. Stepwise regression [50]
has been used for this purpose, in which the variables are either included or excluded in a
sequence to optimize a fitness criterion. Once feature selection is utilized, an amendment
is typically required in accordance with engineering judgment [17] to avoid overfitting
and choosing many similar or correlated features and to revise the features on a physically
reasonable basis.

Beginning with the simplest case that is in line with the traditional PSDM format,
Xie et al. [17] adopted a generalized linear model (GLM) algorithm (Equation (8)) and
stepwise technique for the regression modeling of seismic demands related to single-
column highway bridges with rocking isolation. In this formula, αT is the vector of
coefficients in the GLM, and x is the vector of input parameters. The variable ε is the normal
random error. To estimate the uplift demand, stepwise regression identified PGV for the
GM intensity measure and two additional GM parameters including velocity frequency
measure and duration-based measure as influential parameters. Other significant factors in
predicting demands were the rocking and the column vibrational parameters.

ŜD = αTx + ε (8)

2.3.2. LASSO

The least absolute shrinkage and selection operator (LASSO) [51] is a feature selection
technique based on the linear regression algorithm. This approach minimizes the regression
residuals by adding a constraint on the regressors’ coefficients, as shown in Equation (9).
This constraint, which is known as the L1 norm regularization, allocates zero values to some
of the coefficients, and as a result, the respective features are eliminated from the regression
model. In Equation (9), n and k show the number of observations and the number of input
parameters, and λ∗ corresponds to the hyperparameter.

min ∑n
i=1 (SDi −∑k

j=1 αjxij)
2
+ ∑k

j=1 λ∗ ||αj ||1 (9)
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To this end, Soleimani et al. [20] applied LASSO to detect the modeling random vari-
ables with the most significant impact on the probabilistic seismic demands. The modeling
variables corresponding to the bridge column specifications were identified as the most in-
fluential factors in predicting the seismic responses of bridges with geometric irregularities.

Similarly, Xie and DesRoches [18] performed a sensitivity analysis of the seismic
demands of a typical two-span highway bridge in California with respect to the variations
of 18 random variables corresponding to the soil-structure interaction (SSI) parameters.
The SSI parameters were added to the regression demand model in addition to the IM.
The two applied feature selection techniques for the linear models including stepwise and
LASSO regression provided a comparable predictive capacity to the ordinary least squares
regression model. The sensitivity study revealed that demands and fragility components
related to the bridge foundations and abutment elements (e.g., unseating, bearing, and shear
key) are significantly sensitive to the SSI parameters, whereas the results corresponding to
the superstructure elements such as the column and deck are negligibly influenced by the
variations in the SSI parameters.

2.4. Seismic Vulnerability Methodology Using Polynomial RSM

A group of researchers (e.g., [25,26]) considered second-order polynomials to generate
PSDMs for developing regional seismic fragility curve of bridges. These models are
formulated as in Equation (10) in which xi and xj represent input parameters (or predictor
variables) and α0, αi, and αj are the constant term and the regression coefficients.

ŜD = α0 + ∑k
i=1 αixi + ∑k

i=1 ∑k
j=1, j≥i αijxixj (10)

Compared to the linear regression model, Pan et al. [27] attained a better fit by applying
a second-order regression model on the response data of a multispan I-girder steel highway
bridge, the most typical of continuous bridges in New York State. Different input variables
were used in the regression models. As expressed in Equation (11), in the quadratic model,
a bridge response was derived from PGA representing the IM. Using MLR, the response
is expressed as a function of GM moment magnitude and distance (see Equation (12)).
Specifically, the authors do not recommend using linear regression for earthquakes stronger
than 0.6 g (PGA) since a nonlinear trend was observed beyond this range.

ŜD = a(ln(PGA))2 + b(ln(PGA)) + c (11)

ŜD = a(ln(Mw)) + b(ln(R)) + c (12)

In line with the application of poly RSM, Seo and Linzell [25,28,29] focused on horizon-
tally curved steel I-girder bridges. In addition to the PGA, they used macro- and micro level
parameters as the input parameters of the model. More specifically, geometric and struc-
tural parameters (macro level) consisted of the number of spans, maximum span length,
deck width, maximum column height, the radius of curvature, and girder spacing. The
microlevel parameters included damping ratio, concrete compressive and tensile strength,
Young’s modulus of concrete and reinforcements, and yield strength of reinforcements.
Among these, the influential parameters in developing the bridge response models were
detected to be the number of spans, maximum span length, the radius of curvature, and
girder spacing [28,29]. Models were created to estimate bridge responses including column
curvature ductility, abutment deformation, and radial and tangential bearing deformation.
Moreover, it was observed that the number of spans, radius of curvature, and the maximum
span length had the highest influence on the seismic fragilities [25].

On the basis of second-order polynomial equations, Park and Towashiraporn [30]
developed RSM on steel-plate-girder bridges in Korea, considering the PGA and the
variables describing the physical configuration of the bridge such as the number of spans,
span length, and pier height. Initially, a simple sensitivity test was conducted on the
influence of these variables on the bridge responses. This was done in an iterative process
for each variable by changing the values of the variable of interest while fixing the value
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of the remaining variables at their median. Based on the results, bridge damage had a
positive correlation (i.e., a linearly increasing trend) with pier height and PGA. Similarly,
bridge damage exacerbated for a greater number of spans, particularly for two- to four-span
bridges. The study showed that the sensitivity decreased for bridges with more than four
spans. In contrast, the seismic damage was not sensitive to the span length variation.
Thereby, PGA, pier height, and the number of spans were chosen as the input variables
for the RSM, since they significantly affected the seismic damage of the studied bridge.
Using the quadratic RSM, Seo and Park [31] generated fragility curves for a portfolio of
regional curved-steel I-girder bridges in the Eastern United States. The constructed RSMs
estimate the curvature ductility of the bridge columns, maximum deformation of bearing,
and abutment as a function of PGA as the IM.

As stated, the polynomial RSMs have been mostly implemented on the seismic de-
mand models of the steel girder bridges. As an example of a few works focused on the
concrete bridges, Du et al. [32] utilized the second-order polynomial RSM (PRSM) approach
to identify the optimal IM used in PSDMs. An optimization process was proposed to
determine how adaptive intensity measures reduce the variability of demand models. In
the case of the multispan simply supported concrete bridge, the one-parameter adaptive
IMs, particularly the peak fractional ground response, improved the PSDMs. Despite that,
similar results were observed whether the nonadaptive or one-parameter adaptive IMs
were used in the models. However, a two fractional-order IM (i.e., the spectral acceleration
(Sa(T*, ζ*)) at the optimal period T* and optimal damping ratio ζ* proposed by Shafieezadeh
et al. [52] significantly improved the models. Polynomial orders higher than two have been
rarely considered to estimate SD. Such examples are the works in the context of surrogate
models that are explained in a later section.

2.5. Random Forest

Tree-based machine-learning algorithms have rarely been applied to derive PSDMs,
which could be because the other algorithms are easier to interpret. Nevertheless, these
algorithms have a couple of advantages over the other approaches. For instance, they can
easily capture a nonlinear relation between the input and output variables without any
prior assumption on the variable distributions. These algorithms construct decision trees by
defining cut points for the values of the input variables and setting up targets for those cut
points. Random forest (RF) is one of the well-known, widely used tree-based algorithms in
which multiple random decision trees are generated, and the results are averaged [53].

Mangalathu and Jeon [33] used RF for a case study of three- and four-span concrete
bridges with the characteristics corresponding to the California bridges. The seismic
demands studied were related to the column curvature ductility and the displacements
of abutments and bearings. Another advantage of RF is ranking how each of the input
variables is important in predicting the model output. Using this feature, Mangalathu
and Jeon [33] found the geometric modeling parameters such as the span length, deck
width, and column height ranked as the most important parameters by RF. This finding
is in agreement with the findings from other studies [20,47] on identifying the influential
parameters in the process of developing PSDMs.

2.6. Artificial Neural Network

Artificial neural network (ANN) has been used in a few studies (e.g., [26,35,36,39]) to
estimate SD. Although this algorithm has different model types, the multilayer perceptron
(MLP) [54], the radial basis function (RBF) [55], and normalized RBF (NRBF) [56] have
been explored.

This algorithm creates a fully interconnected network composed of three types of
layers (Figure 4) each for the input variables, a hidden layer to map input and output, and
the output layer. To estimate SD, the input layer consists of uncertain geometric, material,
and GM parameters. The hidden layer includes a number of nodes (also known as neurons)



Infrastructures 2022, 7, 64 14 of 31

that are trained to efficiently link the input layer to the output layer. The output layer has
the bridge component response from which ŜD is derived, based on Equation (13).

ŜD = ϕ0 + ∑m
i=1 ϕiφi[., x] (13)
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In this formulation, ϕ0 is the bias and the ϕis are the connection weights between the
layers. The values of these weights are iteratively set. The φi[., x] is a nonlinear mapping
from the input layer to the hidden layer corresponding to the ith hidden layer of neurons.
The main difference between the different network types lies in the type of mapping
functions that are implemented by the neurons in the hidden layer. In the MLP network
type, various mapping functions are used, such as the sigmoid transfer function (see
Equation (14), where ωij represents the weights assigned for the activity of the jth input
parameter linked to the ith neuron).

φi[ω, x] =
1

1 + exp
(
−∑k

j=1 ωijxj

) (14)

The commonly adopted radial basis function is the Gaussian function as displayed in
Equation (15) (for RBF) and Equation (16) (for NRBF), in which cri stands for the centers
of the radial basis functions and ζi represents a scalar parameter corresponding to the
width of the ith radial unit to the maximum distance found between the centers of the basis
functions. In this function, the response monotonically changes as the distance from the
central point increases. In Equation (16), the activity of neurons is normalized by the total
activity of all m hidden neurons.

φi[cr, x] = exp(
−∑k

j=1 (xj − crij)
2

2ζ2
i

) (15)

φi[cr, x] = exp(
−∑k

j=1 (xj − crij)
2

2ζ2
i

)/ ∑m
i=1 φi[cr, x] (16)

Pang et al. [35] applied the aforementioned ANN algorithm with the RBF mapping
functions and using 16 selected material and geometric parameters to estimate SD values
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of a three-span continuous bridge with two columns per bent, located in China. The con-
sidered demands were related to the displacements of the column, bearing, and abutment.
They found that ANN could provide an acceptable approximation of the demand with
less computational time compared to the traditional approach. Similarly, Mangalathu
et al. [36] applied ANN with the MLP functions to two-, three-, and four-span concrete
box-girder bridges with one and two columns per bent and seat type abutments. They used
EDPs similar to those used by Pang et al. [35] and, by applying ANN, also found higher
prediction accuracy than the conventional approach. Both of these studies used one hidden
layer and a certain pre-assumed number of nodes in the layer (e.g., Mangalathu et al. [36]
used 10 nodes). Some other researchers [26,39] implemented ANN in the context of the
surrogate model that is explained in the following section.

2.7. Surrogate Models

Surrogate demand models (SDMs) for bridges, called also metamodels [57], were
proposed by Ghosh et al. [26] with the intention to reduce computation time, yet efficiently
reflect the complex relationship between predictor variables and the predicted seismic re-
sponses of a bridge component. To this end, Ghosh et al. [26] implemented four algorithms
to approximate SD of multispan simply supported concrete bridges. These algorithms were
the classical second-order PRSM (Equation (10)), multivariate adaptive regression splines
(MARS) (introduced by Friedman [58]), and RBF networks (Equation (15)). They adopted a
polyharmonic spline (Equation (17)) for the RBF. In the MARS algorithm (Equations (18)
and (19)), SD is expressed as an expansion of spline basis functions, which are composed
of linear and cubic splines. In these formulations, nbf represents the number of basis
functions and nf represents the number of truncated linear functions multiplied in the ith
basis function. The variable tji is the knot value corresponding to the input parameter xji
and is set by a forward–backward iterative procedure. In addition, sji is a sign variable that
is equal to +1 or −1, which indicates the right or left side of the considered step function.

φi[ω, x] =
∑k

j=1 (xj − crij)
2

ζ2
i

(17)

ŜD = ρ0 + ∑nb f
i=1 ρi fi[., x] (18)

fi[., x] = ∏n f
j=1

[
sji
(

xji − tji
)]

(19)

The regression model developed by Ghosh et al. [26] consisted of 11 input variables,
extracted from the GM intensity, bridge modeling parameters, and deterioration affected
parameters. On the other hand, the outcome variables were selected from the seismic re-
sponses of the primary bridge components including the columns, bearings, and abutments.
In conclusion, the model with the best overall performance was the one produced by MARS.
The surrogate models built up by RBF and PRSM placed second and third, respectively.

Similarly, Kameshwar and Padgett [38] applied PRSM, the adaptive basis function
construction (ABFC) [59], and RBF networks with Gaussian basis functions to estimate
SD of multispan simply supported concrete bridges. Although the ABFC is similar to the
PRSM, the order of polynomials is not predetermined in the ABFC algorithm. Thereby,
ABFC can produce generalized polynomial models. They used nine input parameters,
including the material and geometric properties of bridges, while using PGA as the IM.
The best performing metamodel to estimate SD found by this study was the one developed
by ABFC. Moreover, the fourth-order PRSM showed the best overall performance among
the polynomial models tested.

2.8. Multivariate Multiple Linear Regression

As stated earlier, MMLR [48] is an extension of the MLR in which a vector of response
variables within the same structure is expressed as a function of a vector of predictor
variables. As expressed in Equation (20), the k input parameters (x = [xi, . . . , xk], which
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can include parameters such as the concrete strength, deck width, superstructure length,
etc.) are mapped to a number of responses (such as column curvature ductility, bearing re-
sponses, etc.). These two approaches (MMLR and MLR) provide similar regression models
with equal regression coefficients and residual variance for individual responses. Neverthe-
less, MMLR provides the residual correlation between the responses which facilitates the
joint calculation of response measures in the process of damage estimation.

In this regard, Du and Padgett [39] used MMLR to estimate eight EDPs, corresponding
to column drift ratio and deformations of bearing and abutments, for two case studies of
multispan bridges: simply supported concrete girder and continuous steel girder types. De-
mand models were created based on linear regression, linear and kernel partial least squares
regression (L-PLSR and K-PLSR), and the MLP network type of ANN. The PLSR [60] con-
structs mutually orthogonal principal components from input parameters. Then, the model
uses these components to estimate the responses. Typically, the optimal number of compo-
nents is determined based on a cross-validation test. In addition to the commonly used
L-PLSR, K-PLSR models are sometimes applied to capture the nonlinearity. This study
uses second- and third-order polynomial kernels. To capture the potential nonlinearity, the
kernel function transforms input parameters x to a higher dimensional feature space using
a nonlinear mapping (i.e., g(.)), as shown in Equation (21). Multiple structural parameters
(i.e., 14 features for the concrete and 16 parameters for steel bridges) were used as the
predictors among which the spectral acceleration at Tmed (representing the geometric mean
of the first two fundamental periods of bridges) served as the IM.

ŜD = αTx + E (20)

K
(
xi, xj

)
= g(xi), g

(
xj
)

(21)

Among all, the model produced by K-PLSR was the best performing model, particu-
larly in terms of prediction accuracy, computational efficiency, and ease of optimizing the
tuning parameter. Tuning the modeling parameters in ANN was more time-consuming
than the other algorithms. Furthermore, the PLSR models are often robust to the predictors’
multicollinearity.

3. Application of the Demand Models to the Seismic Hazard Analysis
3.1. Fragility Curves

Fragility curves have emerged as essential tools in performance-based earthquake
engineering to identify the potential seismic risk during an earthquake. Many researchers
(e.g., [6–11,22,61,62]) have used PSDMs to generate analytical fragility curves to characterize
the conditional reliability of the existing highway transportation network. Analytical
fragility curves, initially introduced by Yu et al. [63], were further extended by Hwang,
et al. [5], Gardoni, et al. [6], and Zhong, et al. [9]. Seismic fragility curves express the
probability of exceeding predefined particular damage states under varying levels of
earthquake intensity. These states are typically defined according to the extent of the
damage ranging from slight to the collapsed state (e.g., slight, moderate, extensive, and
complete) (FEMA, 2009).

The estimate of the bridge system fragility curve is performed through the develop-
ment of a joint probabilistic seismic demand model, using the correlation between the
demands of the various bridge components, in conjunction with Monte Carlo simula-
tions [7]. The upper conservative bound on the system fragility assumes no correlation
between the component demands (Equation (22)), while the lower unconservative bound
assumes a complete correlation.

max
p

PFp|IM ≤ PFsystem|IM ≤ 1−∏p

[
1− PFp|IM

]
(22)
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Along with the assumption of log-normally distributed seismic capacity (SC), the
probability of seismic demand (SD) exceeding capacity can be written as the following
normal cumulative function (i.e., Φ(.)), for the pth bridge component:

PFp|IM = P[SD ≥ SC|IM] = Φ

 ln
(

µDM
SC

)
√

β2
DM + β2

C

 (23)

Recently, alternative approaches such as parameterized and surrogated models (e.g.,
representative studies are [17,64–66]), which are primarily based on logistic regression
and incorporate various input parameters in the regression model, have been proposed to
estimate this probability. Discussion of this probability calculation and potential methods
are beyond the scope of this study due to limited space, while interested readers can
refer to the review article by Muntasir Billah and Shahria Alam [67] for more details on
developments on fragility analysis procedures.

3.2. Resilience

The literature on seismic resilience assessment of bridges is not as expansive as fragility
models. This is primarily due to the lack of a consensus definition of resilience and its more
complicated procedure. In recent years, resilience and its means of quantification have re-
ceived particular attention in the engineering community [68]. Given the multidisciplinary
and interchangeable nature of the resilience concept, it has often been confused with other
concepts such as vulnerability, reliability, and risk.

Woods [69] described resilience around four basic concepts: ’1. Resilience as a rebound
from trauma and return to equilibrium; 2. Resilience as a synonym for robustness; 3. re-
silience as the opposite of brittleness; and 4. Resilience as a network architecture that can
sustain the ability to adapt to future surprises as conditions evolve’. Most resilience quan-
tification techniques reported in the literature are aligned with the first definition where
resilience is defined as a function of quantifiable and time-dependent system performance
indicator/delivery function/figure-of-merit. System performance indicator, often repre-
sented by Q(t), defines the functionality of the system. Henry and Ramirez-Marquez [70]
used a trapezoid function to describe system behavior in response to a disruptive event
and corresponding recovery stage. The area underneath the trapezoid function is then
divided by five zones, as shown in Figure 5: Zone 1: represents the status quo equilibrium
zone; Zone 2: represents the failure absorption zone; Zone3: is the initiation of recovery;
Zone 4: represents the recovery zone; and Zone 5: shows post-recovery equilibrium zone.
Hajializadeh and Imani [71] have expanded the trapezoid description to cover different
failure absorption and recovery/restoration trajectories for different assets. Both failure
absorption and recovery/restoration trajectory functions can be represented by differ-
ent trajectories/patterns, as shown by shaded areas in Figure 5. The resilience can be
then quantified as either the area of loss of functionality (negative connotation) or as the
area of remaining functionality (positive connotation), also referred to as the resilience
triangle/trapezoid.
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Most literature in the field of seismic resilience assessment (also known as lifecycle
assessment) expresses resilience as follows:

R(t) =

∫ t
t0

Q(t)dt

t− t0
(24)

where Q(t) represents the system/structure performance/functionality with time, t0, the
start time and/or time of seismic event occurrence, and t represents investigation time
horizon. Sharma [72] proposed additional metrics for quantifying resilience using probabil-
ity theory analogy: resilience density function, cumulative resilience function, resilience
disparity, center of resilience, median of resilience, mode of resilience, resilience bandwidth,
and resilience moment. The study presented the mathematical approach in deriving these
metrics as a function of the rate of recovery progress, also referred to as the resilience
density function.

The performance indicator/functionality Q(t) of a bridge is another debatable and
versatile component of seismic resilience assessment. This is often described by establishing
the relationship between bridge damage level and the associated loss of functionality [19].
To account for the associated uncertainties in these relationships, Decò et al. [73] proposed
a probabilistic approach. The studies conducted by Jia et al. [74] and Sharma et al. [75]
defined the performance function as instantaneous reliability. For this purpose, the four
damage levels of ATC-38 [76] were described in terms of the reliability of the structure,
delimited by means of three thresholds. Briaud et al. [77] provided details of specifying
these thresholds as a function of the system.

The relationship between the damage level and the corresponding loss of functionality
defines the level of performance drop in Zone 2. To the best of authors’ knowledge, the
literature in the field of seismic resilience assessment simplifies the failure absorption
function as a sudden drop in performance indicator with no consideration of failure
absorption time or failure absorption pattern. This assumption is not too unrealistic as a
failure because a seismic event is often instantaneous and/or the failure absorption time
can be negligible in comparison to the recovery/restoration process (Zone 3–4). FEMA [78]
and Decò et al. [73] used fragility curves to provide the probability of the bridge being in a
certain damage state and used damage states defined in ATC [79] to quantify the residual
functionality associated with the bridge damage level defined. A similar concept has been
used in the study by Karamlou and Bocchini [80]. In their study, the authors described
functionality as reduced traffic-carrying capacity with a sudden drop in capacity upon the
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occurrence of a seismic event and defined the expected functionality of the structure at
time t as:

Q(t) = ∑nIM
s=1 P(IM = s)∑nDS

d=1 P(DS = d|IM = s)Qd(t) (25)

where P(IM = s) is the probability of occurrence of an extreme event with an intensity of
IM = s, driven from a typical probabilistic seismic hazard analysis; and P(DS = d|IM = s)
is the conditional probability of occurrence of damage level d given the event intensity
of IM = s, driven from the fragility curve. Qd(t) is the functionality recovery function
given damage level d. In their study, the recovery functions of ATC-13 [79] are adapted to
formulate Qd(t). The literature shows that the efforts in quantifying resilience have been
predominantly focused on recovery/restoration trajectories/functions (Zone 4). Gidaris
et al. [81] presented an overview of these restoration functions. In general, the proposed
bridge seismic recovery/restoration models are grouped into two categories: 1. Probabilistic
analytical models; 2. Models driven from expert judgment. One of the versatile theoretical
models for recovery is Bocchini et al.’s restoration trajectory, expressed as [82]:

Q(t > t0 +−δi) = Qr + H(t− t0 − δi)Rs

(
t− t0 − δi

δr

)
(Qt −Qr) (26)

where t0 represents the time of occurrence of the seismic event; Qr is the residual func-
tionality upon the occurrence of the event; H(·) is the Heaviside step function; Qt is the
functionality after completion of the recovery process; δr is the duration of recovery; δi is
the time lag between the occurrence of the seismic event and the beginning of the recovery,
also referred as recovery initiation time; and Rs(·) is the restoration function. This is one of
few studies that considered the time lag between full failure absorption and initiation of
recovery. In Bocchini et al.’s study [82], a six-parameter sinusoidal function was considered
for Rs(·), which captures a variety of restoration from linear [83,84] to trigonometric [85] to
exponential [86].

The largest challenge in analytical models is their calibration as it depends on a variety
of parameters such as case-specific preparedness and resources for recovery and restoration,
logistics, and prioritization strategy. To address this challenge, several studies used expert
knowledge to derive recovery and restoration models. Among common models is HAZUS-
MH [87], which defined restoration/recovery as a normal cumulative distribution function
with the mean and standard deviation of mt,d and σt,d, respectively. The subscript d and t
represent different damage states and time, respectively. This formulation does not consider
the versatility of recovery functions as a function of bridge type. This model has been used
in several studies to quantify resilience, e.g., [80,88,89]. A similar approach was proposed
by Padgett and DesRoches [19] using the CSUS Department of Transportation’s bridge
inspectors’ and officials’ opinions. The model was used in the study conducted by [90]
to optimize the bridge retrofit program post-earthquake. The basis of ATC [79] recovery
functions is also expert opinions that provide the mean time required to reach 30%, 60%,
and 100% of the normal functionality of the structure and assuming structure has lost its
full 100% capacity. Table 3 provides a summary of studies that have utilized a form of
PSDMs to generate fragility curves and assessed the resilience of bridges under seismic
hazards. The search strategy for this table covers important studies that have used a form
of PDSMs and/or fragility analysis and subsequently have quantified bridge resilience
as a function of fragility. In all studies reviewed, the failure propagation pattern is a
sudden drop in performance with varying thresholds for each damage state. Apart from
the fragility functions’ form, the studies also differ in recovery trajectories. Among the
five studies considered, three have quantified resilience as a function of PGA only. This is
used to investigate the correlation of the resilience metric versus the fragility curve used to
describe the vulnerability of the bridges studied. Figure 6 shows the correlation coefficients
for all three studies and for different levels of damage state. The difference in patterns
relates to the magnitude of the drop in functionality (i.e., residual functionality), fragility
curve parameters, PSDMs model, the assumption on bridge age and its aging behavior,
and recovery trajectory functions.
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Table 3. Summary of studies utilizing PSDMS and fragility curves for resilient assessment purposes.

Study Fragility Models
Resilience

Quantification
Technique

Recovery
Trajectory Profile

Correlation
Coefficient Range

between Resilience
and

Fragility Curves

Resilience as
Lifecycle
Analysis

Resilience Metric
Reporting System

Pang, Wei, and
Yuan

(2020) [91]

Analytical
fragility using

PSDMs in
Equations (3)

and (4)

Equation (24)
Equation (26) with positive negative

exponential, and trigonometric
recovery profile

[0.7–0.9] 4

Resilience as a
function of time of

occurrence and
peak

ground acceleration

Fu, Gao, and Li
(2020) [92]

Analytical
fragility using

PSDMs in
Equations (3)

and (4)

Equation (24)

Q(t) = γ(α(t)Q1(t) + β(t)Q2(t))
And Equation (26) to define Q1(t)
and Q2(t) and using experimental

data for constant parameters

[0.77–0.98]
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4. Discussion
4.1. Comparative Analysis of Highlighted Methodologies

Despite the extensive works on improving the demand models in a variety of direc-
tions, the simplest univariate demand model called the conventional model above (see
Section 2.1: Description of PSDM and Univariate Linear Model), is yet commonly used
in practice. In fact, the simplest form of the conventional model makes its application
convenient. However, it may over- or underestimate the seismic demands of bridge com-
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ponents and consequently the vulnerability of the structure. Furthermore, a number of
uncertainties are not quantified explicitly in the response function and the predictions may
be biased for a particular range of ground motions. Additionally, none of the existing
attempts toward developing PSDMs proposed a generalizable model that could replace the
conventional model.

The established ML-based demand models provide a basis for considering various
uncertainties for the analytical measurement of seismic demands, but their application is
still very limited. Although according to the reviewed articles machine learning seems to
be a promising approach to enhance the estimation of demands, the research on improving
bridge PSDMs is still growing and yet some challenges need to be addressed in future
studies. The applied ML methods possess their advantages, inherent drawbacks, and
challenges for practical applications. To elucidate the link across available literature, the
key advantages and disadvantages of the commonly proposed approaches are presented in
Table 4. This information indicates that despite advances in the analytical demand models,
there remains scope for significant improvement.

Table 4. Comparison of the main approaches of proposed methods for development of probabilistic
seismic demand models of bridges.

Method Fundamental Advantages Featured Disadvantages/Drawbacks

Unidimensional linear regression
- Simple model
- Easy to implement

- Based upon
log-normality assumption

- Only one input parameter for
different components of a bridge
and different classes of bridges

- Does not take into account
uncertain variables other than an
IM in the regression model

Modification factors

- Easily generate PSDMs of bridges
with particular characteristics using
the already developed PSDMs for
typical bridges

- Can replace finite element modeling
and NLTHA for specific
bridge types

- Covers specific bridge types
- Accounts for restricted

uncertain parameters
- Modification factors need to be

developed for a variety of bridges
- Factors need to be optimized on a

comprehensive dataset that leads to
costly computations

- Based upon
log-normality assumption

Multiparameter general linear regression
models, stepwise regression, LASSO

- Considers different sources of
uncertainty

- Can replace complex and
time-consuming models.

- Low computational cost for
stepwise regression.

- LASSO is an efficient approach that
assigns zero coefficients for
redundant parameters

- General models, without feature
selection, have overfitting and
complexity issue due to large
number of input variables

- Stepwise regression does not check
all combinations of input variables
hence it does not provide the best
set of input variables

- LASSO chooses the maximum
number of variables to reach the
best fit
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Table 4. Cont.

Method Fundamental Advantages Featured Disadvantages/Drawbacks

Polynomial regression

- Considers different sources
of uncertainty

- Can replace complex and
time-consuming models.

- Provide a better fit to data with no
apparent linear correlation

- Overfitted and complexity happens
if feature selection techniques are
not incorporated

- Feature selection will be
computationally expensive and
sometimes infeasible particularly
when interaction between variables
is considered

- Orders higher than 2 will produce
complex models and have not been
investigated yet

Random forest

- Easy to interpret
- Provide level of importance of

uncertain parameters
- Provide a great fit to a

nonlinear dataset
- No prior assumption on

distribution of variables

- Needs high computational power
- Does not provide an actual

formulation of the predictive model
which makes it challenging for
future application

- Implementation might be difficult
for future application without
access to the source code

Artificial neural networks

- Requires significantly less
computational time compared to
traditional approaches and
other alternatives

- Covers a wide range of
relationships between the input and
output variables

- No prior assumption on
distribution of variables

- Many different algorithms exists so
there is yet a need to find the most
suitable algorithm for specific
applications, demands, and
bridge types

As described earlier in Section 2 (see Tables 1 and 2), most of the efforts in this topic
proposed models with the focus on regional risk assessments. Since different regions
have different bridge types and specifications such as seismicity, design guidelines, and
construction practices, the models generated are structure-specific and may not yet be
extended to the other bridge types or similar bridges with different material properties,
geometry, and location. Furthermore, different studies adopted different modeling and
analysis approaches that have been adopted for certain structural types and configurations
with specific detailing. Moreover, inconsistency is observed among the studies in this
domain in terms of modeling and analysis approaches along with different assumptions to
simplify the procedures and the considered uncertain parameters. All these factors render
the limitations and lack of generality of developed PSDMs which restrict their applications
in seismic performance evaluation of bridges.

Valuable efforts have been made to extend the generalization capability of the demand
models. To this end, most studies considered representative bridges with significant vari-
ations in the structural parameters to produce demand models of a portfolio of bridges.
These models involve multiple predictors to reflect the variation across the considered port-
folio. A vast majority of these models incorporate many input variables; this is beneficial in
the aspect of including various sources of uncertainty, but in terms of the performance of
predictive models, adding many variables could lead to overfitting data and misinterpreta-
tion of the estimated demands.
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The applied ML methods computational effort by developing predictive demand
models to replace the numerical simulations. The literature proved that the general linear
models, specifically when having embedded feature selection techniques, with multiple
predictors provide a reliable estimate of the seismic demands. Particularly, this method
allows the consideration of various uncertain parameters such as geometric, material, aging,
and soil properties by expanding the number of input variables in the model. This method
suffers from several drawbacks, such as the low prediction power to capture nonlinearity,
prior assumption on the log-normality distribution of the demands, and the required
specific number of excitations to achieve an acceptable performance. Specifically, the
assignment of the prior distribution, while it is often unknown and may not be compatible
for all bridge classes, poses subjective bias on the prediction model. Furthermore, in the
case of the polynomial response models, the computational time rises drastically with the
increasing number of input variables. Moreover, the prediction errors are assumed to fit a
normal distribution. To compensate for these drawbacks, other methods such as decision
trees are proposed. To overcome the potential overfitting problem associated with a single
decision tree, ensemble learning approaches such as random forest implements bagging and
aggregating strategies to combine multiple trees. Despite being computationally expensive,
random forest outperforms the other methods for predicting the seismic demands of bridge
components. Although this method is easily interpretable, the future application of its
black-box model is complicated since it does not generate a formulation for the predictive
demand model. Similarly, neural network methods indicated great potential in accurately
predicting the bridge demands while being able to provide prediction formulation and
manage data scarcity without overfitting data.

Overall, the existing PSDMs presented in this paper can be improved in many di-
rections. According to the reviewed literature, we summarize a list of remarks on the
current needs and challenges in the existing models, and potential future directions are
provided next.

4.2. Challenges to Be Addressed in Future Research

This section highlights the grand challenges and provides recommendations for po-
tential future research advancement to enhance the capability of PSDMs. Particularly,
considering these points establish the path for the community to generate credible and prac-
tical PSDMs toward more reliable decision-making for the seismic performance assessment
of bridges. The remarks follow:

• The primary reason for the popularity of the univariate conventional model is its
simplicity. However, the growing advanced statistical and ML methodologies make
it feasible to develop efficient yet simple PSDMs with the most influential set of pre-
dictors that would be practical to infer. Despite the existing variety of ML algorithms,
there is a gap between all the theoretical aspects and the engineering applications re-
lated to the PSDMs. Although there has been a growing body of research to implement
the recently developed ML methodologies, such methods have not yet been widely
applied in PSDMs, and more studies are needed to apply novel ML approaches on
various bridge types. Their application in seismic resilience assessment is also yet to
be explored.

• The log-normality assumption of the demand and capacity needs to be reassessed. As
mentioned in the previous sections, a couple of more recent studies proved that this
assumption is not compatible with all demands and bridge types. The distribution type
can lead researchers to choose the appropriate ML algorithm since every algorithm
has its own underlying assumptions for the input and output distribution.

• Generally, a PSDM model correlates selective input parameters to a specific demand
parameter. Although some of the proposed response surface models provide higher
accuracy, using too many predictors, on one hand, increases the chance of overfitting
and on the other hand, makes the final model impractical to implement in practice. To
this end, the design of the experiment or a prior sensitivity analysis was commonly
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performed to consider specific input parameters in each round of analyses. In fact,
this issue can be currently addressed effortlessly as a part of developing the model,
using the capabilities of ML approaches such as the feature selecting techniques (such
as elastic net, stepwise regression, LASSO, and random forest) that are embedded in
the model-training algorithms. These techniques have been used by a few researchers
for basic models, but they should be considered as an essential step to integrate with
more complex models such as PRSM.

• As mentioned earlier (see section titled Description of PSDM and Univariate Linear
Model), the selection of appropriate IMs is critical for developing a practical PSDM.
However, in the conventional form of PSDM (i.e., Equations (2) and (3)), a single IM
is chosen to estimate demands. A variety of IMs exists that their level of importance
as an input variable in the PSDM needs to be assessed. This can lead to PSDMs
with multiparameter IM to include parameters such as the PGA, PGV, etc. As stated
earlier, some studies proposed an optimal intensity measure for specific bridge types
by iteratively varying IMs in the models while monitoring the resulting variations in
the estimated demand. However, these findings may not be generalized to bridges
with different characteristics since each study is limited to a particular bridge type and
specific structural parameters. For example, spectral acceleration could be a suitable
candidate for bridge components whose response is significantly correlated with Sa.
This typically happens when the corresponding response has not yet reached a highly
inelastic range, and its seismic demand is governed by a single fundamental mode of
vibration. On the contrary, alternative IMs need to be investigated to take the effect of
inelasticity and the higher modes of vibration. There yet remains a principal milestone
to identify the IMs that are highly correlated with the demands of various components
of a bridge and to propose a more generalized recommendation for the selection of
efficient IMs in developing PSDMs.

• Previous studies investigated PSDMs for a variety of EDPs (commonly selected ar-
bitrarily or based on engineering judgment) among which the demands associated
with the bridge column failure are found to be the most common primary demand in
estimating the vulnerability of the bridge system. In order to incorporate the results of
PSDMs into the fragility and resilience evaluation of bridges, the PSDMs of the various
bridge components need to be derived individually; then, individual fragilities are
generated for each component, and these fragilities are combined in a later step to
determining the fragility of the bridge system. In this process, the correlation between
the EDPs is often assumed, as noted in previous literature. However, this correlation
could alter the overall conclusions. Thereby, further research is required to investigate
the influence of this correlation on the fragility and resilience analysis. Moreover, the
correlation between the responses of the different bridge components can be analyzed
using advanced ML approaches to improve the overall assessment. Moreover, there
is a potential to incorporate all EDPs of interest into a single multivariate PSDM. In
fact, such a model could not only replace the costly derivation of the system’s fragility
from individual fragilities but would also be able to capture the correlation between
different EDPs.

• Overall, for the prediction of bridge demands, the application of tree-based ML algo-
rithms and the polynomial orders higher than two and nonlinear methods is limited.
Previous studies found decision tree and ANN algorithms effective in terms of captur-
ing the complexity in data. Among the available tree-based methods, only random
forest has been tested by a few researchers; hence, future research can investigate the
performance of other bagging and boosting algorithms such as least squares boosting.
Furthermore, it was noted that the application of ANN in this field is very limited. In
this ML approach, the number of hidden layers and the number of nodes influence
the efficiency of the ANN algorithm [94]. As stated, previous studies that applied
ANN only used one hidden layer and assumed a particular number of nodes for their
analysis. However, on the application of ANN for estimating the bridge SD, further
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studies are needed to determine the optimal number of hidden layers as well as the
number of nodes to optimize the model efficiency.

• As described, PSDMs are extensively used to generate analytical fragility curves that
are used to estimate the resilience of bridges. To this end, relatively few studies
have focused on applying different ML algorithms to improve fragility functions. In
particular, most studies parameterized fragility functions that are primarily developed
through logistic regression. Thus, research needs to explore the performance of other
methods in terms of fragility analysis of bridges.

• Similar to the fragility analysis, the relevant studies on the resilience assessment of
bridges need to be expanded. As it is shown in the Resilience section, there is no
clear consensus in resilience and lifecycle assessment using PSDMs. The literature
is in agreement that the failure absorption patterns upon seismic event occurrence
can be simplified as a sudden drop in functionality/performance with an associated
probability of exceedance. However, the main difference in approaches seems to be
focused on formulating the recovery trajectories. While many have proposed a variety
of analytical trajectories to account for different scenarios, some have simplified the
recovery/restoration patterns as a sudden rise in functionality with mean recovery
time, driven by expert judgment.

4.3. Potential Future Developments

Given the advancements in technologies and computational techniques that lead to
the growth of diverse data, ML approaches have a tremendous potential to revolutionize
predictions in natural hazard engineering. Despite the growing body of research, the
implementation of ML in improving the probabilistic seismic analysis of bridges is in its
early stages. Research advances in this domain can be further expanded to leverage the
efficiency and advantages that ML methods offer. To this end, this section presents potential
future opportunities toward the future growth of ML application in evaluating bridges
subjected to seismic hazards.

For developing ML-based PSDMs, different researchers used different suites of ground
motions and training data as each study focused on a specific portfolio of bridges. Using a
common standard data structure makes the proposed models more comparable and the
findings more generalizable. In this regard, establishing a widely acceptable, community-
driven platform such as DesignSafe is beneficial for researchers to store, share, and integrate
large-scale training data for the future ML application, and also for practicing the tested
ML algorithms.

Previous studies proved the importance of the selection of ground motions on the
accuracy of derived demand models and the reliability of fragility curves. Therefore, as an
initial step, it is critical to creating a suitable, accessible set of ground motions such as the
NGA motion database. Moreover, there is a need for further investigation of the optimal
number of ground motions and selection of an appropriate IM to develop a reliable model,
since there is yet a topic of debate among researchers.

Although several ML algorithms have been implemented to propose improved PSDMs,
state-of-the-art still falls short on providing a comprehensive comparative analysis of
different methods and identifying the optimal or most suitable approach. To this end, a
research study, such as the work by Soleimani [95], is required to focus on a systematic
investigation of various ML algorithms in which a well-constructed framework needs to be
followed for training, validating, and testing the models. An additional separate procedure
for testing the model’s performance on a different dataset or using either case-history
data or sensor-based recordings can significantly improve the generalization capability of
the models.

Testing the efficiency and accuracy of the PSDMs is essential to find the appropri-
ate model. There are three common evaluation criteria, as described in this section, to
assess the performance of predictive models. Although a single criterion can be used, as
found in most of the reviewed literature, the assessment performance in which all three



Infrastructures 2022, 7, 64 26 of 31

criteria are evaluated is recommended for future studies to increase the credibility of the
proposed model.

One of these criteria is the root mean squared error (RMSE), global goodness-of-fit
measure, which is computed based on Equation (27). Another criterion is R2 that is also
calculated using MSE, as denoted in Equation (28) in which σ2 is the variance of the
response in the original dataset. The other criterion is the relative maximum absolute error
(RMAE) that measures the local fitness of a model, as calculated in Equation (29).

RMSE =
√

MSE =

√
∑n

i=1
(
SDi − ŜDi

)2

n
(27)

R2 = 1− MSE
σ2 (28)

RMAE =
max

i

∣∣SDi − ŜDi
∣∣

σ2 (29)

Moreover, k-fold cross-validation (CV) is recommended to be applied in the future as
a well-known unbiased approach to evaluating the overall performance of an ML-based
model that is particularly beneficial in the training–validation process to optimize the
hyperparameters. This approach partitions data into random k* subsets that train the
model based on (k*−1) subsets and keeps the remaining subset for validation. This process
is repeated, and the error measures are averaged over the k-folds.

ANN algorithms have been proven to be efficient ML approaches to solve a vast
variety of problems in many disciplines. ANN can outperform other ML methods while
overcoming their limitations owing to its capability to capture the high-dimensional non-
linear relationship between the predictors and the EDPs. In this regard, the determination
of the optimal network architecture, optimizing the associated solvers, and tuning the
hyperparameters that play significant roles in the overall performance of the model needs a
thorough investigation in future research, such as the research performed by Soleimani and
Liu [96]. Furthermore, future studies on developing new PSDMs can extend the application
of classic ANN to a deep neural network to boost the model performance, particularly
when managing intricate patterns and scarcity in data or an ill-posed problem. Moreover,
simplifying the network complexity can be a potential research topic. To this end, the
most informative nodes in the network can be identified and an equivalent network can be
constructed with only the most influential nodes without sacrificing the accuracy of the
original network.

Another great contribution can be creating a single transparent and robust framework
to predict the seismic demands of bridges by integrating advanced approaches. For ex-
ample, the ANN algorithm can be combined with other artificial intelligence algorithms
such as Bayesian updating to facilitate sensitivity analysis of demands to perturbation of
parameters, providing confidence bounds, identifying correlated predictors, and handling
incomplete datasets. Such an integrated framework provides a promising resource to create
a transparent model that can simply be carried out in routine practice. In this framework,
identifying the most plausible uncertain parameters in the model is an essential task to
prevent or alleviate data overfitting issues. In addition, incorporating modification factors
for specific bridge configurations will allow the changes to be easily adopted in the models.

Although researchers reported that the estimated seismic demand values of bridge
components significantly depend on the proposed predictive model, implemented algo-
rithms, and associated uncertain parameters, the impact of different model types is still
unclear on the overall probabilistic seismic analysis. To this end, it is essential to explore
to what extent the fragility and resilience of bridge systems are sensitive to the various
seismic demand models and the applied ML algorithms [97].

Eventually, in addition to probe unexplored or less explored ML algorithms, there
exists an emerging trend that requires researchers to develop new theory-guided ML algo-
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rithms for our application needs considering the physics-based characteristics of seismic
demands of bridges.

5. Conclusions

Over recent years, extensive research has been performed to improve the efficiency of
the probabilistic seismic demand models (PSDMs) of bridges. Nonetheless, the findings
from these studies may not be generalized since each is limited to a specific bridge type, a
particular relationship between the IMs and the demand, assumptions on the distribution
of the demands, certain analysis methodologies, and also limited in terms of the number
of applied excitations, and arbitrarily selected list of demands and IMs. As a result, the
conventional simplest form of PSDM that expresses the seismic demand of interest in terms
of the ground motion intensity measure continues to be used in practice.

Natural hazard engineering is benefiting from well-established machine-learning (ML)
approaches. Although ML implementation is a high-impact research area in earthquake
engineering, it is in its rising stages to reliably predict seismic demands of highway bridges.
This state-of-the-art review presents the significance of various ML algorithms implemented
for improving probabilistic seismic demand models. This article reveals that ML algorithms
have potential promise to learn complex interrelations among contributing parameters in
estimating the seismic demands, to handle various sources of uncertainty, and to manage
large-scale problems having diverse data structures.

Moreover, this study presents a state-of-the-art review of the existing PSDMs with
ML application to broaden insight into these models, to increase the usability of the
current models, and to extend the research for enhancing the PSDMs. The overview
and general conclusions shed light on a way to select an appropriate PSDM based on
matching the specifications of a problem and the model attributes provided in this study.
The application of proposed PSDMs in fragility analysis and their incorporation into the
resilience assessment are also described. Furthermore, according to the overview of the
existing models, this study highlights the challenges and current needs to be addressed
by future research to facilitate the practical application of the PSDMs. This article can
serve as a reference for researchers to encourage and guide broader advances in ML
application, providing a more reliable risk assessment tool for highway bridges to ensure
the reliability of transport facilities. Since this study is limited to bridges, future studies
should explore the efficiency of alternative PSDMs for the seismic demand modeling of
other structural systems.
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